ABSTRACT
Topography in forearc regions reflects tectonic processes along the subduction interface, from seismic cycle-related transients to long-term competition between accretion and erosion. Yet, no consensus exists about the topography drivers, especially as the contribution of deep accretion remains poorly constrained. Here, we use thermo-mechanical simulations to show that transient slab-top stripping events at the base of the forearc crust control uplift-then-subsidence sequences. This 100s-m-high topographic signal with a Myr-long periodicity, mostly inaccessible to geodetic and geomorphological records, reflects the nature and influx rate of material involved in the accretion process. The protracted succession of stripping events eventually results in the pulsing rise of a large, positive coastal topography. Trench-parallel alternation of forearc highs and depressions along active margins worldwide may reflect temporal snapshots of different stages of these surface oscillations, implying that the 3D shape of topography enables tracking deep accretion and associated plate-interface frictional properties in space and time.
ABSTRACT
Eruptive activity shapes volcanic edifices. The formation of broad caldera depressions is often associated with major collapse events, emplacing conspicuous pyroclastic deposits. However, caldera subsidence may also proceed silently by magma withdrawal at depth, more difficult to detect. Ambrym, a basaltic volcanic island, hosts a 12-km wide caldera and several intensely-degassing lava lakes confined to intra-caldera cones. Using satellite remote sensing of deformation, gas emissions and thermal anomalies, combined with seismicity and ground observations, we show that in December 2018 an intra-caldera eruption at Ambrym preceded normal faulting with >2 m of associated uplift along the eastern rift zone and 2.5 m of caldera-wide subsidence. Deformation was caused by lateral migration of >0.4 cubic kilometers of magma into the rift zone, extinguishing the lava lakes, and feeding a submarine eruption in the rift edge. Recurring rifting episodes, favored by stress induced by the D'Entrecasteaux Ridge collision against the New Hebrides arc, lead to progressive subsidence of Ambrym's caldera and concurrent draining of the lava lakes. Although counterintuitive, convergent margin systems can induce rift zone volcanism and subsequent caldera subsidence.
ABSTRACT
We present a synthesis of diverse observations of the first recorded eruption of Nabro volcano, Eritrea, which began on 12 June 2011. While no monitoring of the volcano was in effect at the time, it has been possible to reconstruct the nature and evolution of the eruption through analysis of regional seismological and infrasound data and satellite remote sensing data, supplemented by petrological analysis of erupted products and brief field surveys. The event is notable for the comparative rarity of recorded historical eruptions in the region and of caldera systems in general, for the prodigious quantity of SO2 emitted into the atmosphere and the significant human impacts that ensued notwithstanding the low population density of the Afar region. It is also relevant in understanding the broader magmatic and tectonic significance of the volcanic massif of which Nabro forms a part and which strikes obliquely to the principal rifting directions in the Red Sea and northern Afar. The whole-rock compositions of the erupted lavas and tephra range from trachybasaltic to trachybasaltic andesite, and crystal-hosted melt inclusions contain up to 3,000 ppm of sulphur by weight. The eruption was preceded by significant seismicity, detected by regional networks of sensors and accompanied by sustained tremor. Substantial infrasound was recorded at distances of hundreds to thousands of kilometres from the vent, beginning at the onset of the eruption and continuing for weeks. Analysis of ground deformation suggests the eruption was fed by a shallow, NW-SE-trending dike, which is consistent with field and satellite observations of vent distributions. Despite lack of prior planning and preparedness for volcanic events in the country, rapid coordination of the emergency response mitigated the human costs of the eruption.