Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Clin Infect Dis ; 78(3): 746-755, 2024 03 20.
Article in English | MEDLINE | ID: mdl-37972288

ABSTRACT

BACKGROUND: During the 2022-2023 influenza season, the United States experienced the highest influenza-associated pediatric hospitalization rate since 2010-2011. Influenza A/H3N2 infections were predominant. METHODS: We analyzed acute respiratory illness (ARI)-associated emergency department or urgent care (ED/UC) encounters or hospitalizations at 3 health systems among children and adolescents aged 6 months-17 years who had influenza molecular testing during October 2022-March 2023. We estimated influenza A vaccine effectiveness (VE) using a test-negative approach. The odds of vaccination among influenza-A-positive cases and influenza-negative controls were compared after adjusting for confounders and applying inverse-propensity-to-be-vaccinated weights. We developed overall and age-stratified VE models. RESULTS: Overall, 13 547 of 44 787 (30.2%) eligible ED/UC encounters and 263 of 1862 (14.1%) hospitalizations were influenza-A-positive cases. Among ED/UC patients, 15.2% of influenza-positive versus 27.1% of influenza-negative patients were vaccinated; VE was 48% (95% confidence interval [CI], 44-52%) overall, 53% (95% CI, 47-58%) among children aged 6 months-4 years, and 38% (95% CI, 30-45%) among those aged 9-17 years. Among hospitalizations, 17.5% of influenza-positive versus 33.4% of influenza-negative patients were vaccinated; VE was 40% (95% CI, 6-61%) overall, 56% (95% CI, 23-75%) among children ages 6 months-4 years, and 46% (95% CI, 2-70%) among those 5-17 years. CONCLUSIONS: During the 2022-2023 influenza season, vaccination reduced the risk of influenza-associated ED/UC encounters and hospitalizations by almost half (overall VE, 40-48%). Influenza vaccination is a critical tool to prevent moderate-to-severe influenza illness in children and adolescents.


Subject(s)
Influenza Vaccines , Influenza, Human , Adolescent , Child , Humans , United States/epidemiology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza A Virus, H3N2 Subtype , Seasons , Vaccine Efficacy , Hospitalization , Vaccination , Emergency Service, Hospital , Hospitals
2.
Clin Infect Dis ; 78(2): 338-348, 2024 02 17.
Article in English | MEDLINE | ID: mdl-37633258

ABSTRACT

BACKGROUND: The epidemiology of coronavirus disease 2019 (COVID-19) continues to develop with emerging variants, expanding population-level immunity, and advances in clinical care. We describe changes in the clinical epidemiology of COVID-19 hospitalizations and risk factors for critical outcomes over time. METHODS: We included adults aged ≥18 years from 10 states hospitalized with COVID-19 June 2021-March 2023. We evaluated changes in demographics, clinical characteristics, and critical outcomes (intensive care unit admission and/or death) and evaluated critical outcomes risk factors (risk ratios [RRs]), stratified by COVID-19 vaccination status. RESULTS: A total of 60 488 COVID-19-associated hospitalizations were included in the analysis. Among those hospitalized, median age increased from 60 to 75 years, proportion vaccinated increased from 18.2% to 70.1%, and critical outcomes declined from 24.8% to 19.4% (all P < .001) between the Delta (June-December, 2021) and post-BA.4/BA.5 (September 2022-March 2023) periods. Hospitalization events with critical outcomes had a higher proportion of ≥4 categories of medical condition categories assessed (32.8%) compared to all hospitalizations (23.0%). Critical outcome risk factors were similar for unvaccinated and vaccinated populations; presence of ≥4 medical condition categories was most strongly associated with risk of critical outcomes regardless of vaccine status (unvaccinated: adjusted RR, 2.27 [95% confidence interval {CI}, 2.14-2.41]; vaccinated: adjusted RR, 1.73 [95% CI, 1.56-1.92]) across periods. CONCLUSIONS: The proportion of adults hospitalized with COVID-19 who experienced critical outcomes decreased with time, and median patient age increased with time. Multimorbidity was most strongly associated with critical outcomes.


Subject(s)
COVID-19 , Adult , Humans , Adolescent , Middle Aged , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Hospitalization , Immunity, Herd , Risk Factors
3.
MMWR Morb Mortal Wkly Rep ; 73(12): 271-276, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38547037

ABSTRACT

In September 2023, CDC's Advisory Committee on Immunization Practices recommended updated 2023-2024 (monovalent XBB.1.5) COVID-19 vaccination for all persons aged ≥6 months to prevent COVID-19, including severe disease. As with past COVID-19 vaccines, additional doses may be considered for persons with immunocompromising conditions, who are at higher risk for severe COVID-19 and might have decreased response to vaccination. In this analysis, vaccine effectiveness (VE) of an updated COVID-19 vaccine dose against COVID-19-associated hospitalization was evaluated during September 2023-February 2024 using data from the VISION VE network. Among adults aged ≥18 years with immunocompromising conditions, VE against COVID-19-associated hospitalization was 38% in the 7-59 days after receipt of an updated vaccine dose and 34% in the 60-119 days after receipt of an updated dose. Few persons (18%) in this high-risk study population had received updated COVID-19 vaccine. All persons aged ≥6 months should receive updated 2023-2024 COVID-19 vaccination; persons with immunocompromising conditions may get additional updated COVID-19 vaccine doses ≥2 months after the last recommended COVID-19 vaccine.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Adult , United States/epidemiology , Humans , Adolescent , Influenza, Human/epidemiology , COVID-19 Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination , Hospitalization
4.
MMWR Morb Mortal Wkly Rep ; 73(8): 180-188, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421945

ABSTRACT

In September 2023, CDC's Advisory Committee on Immunization Practices recommended updated 2023-2024 (monovalent XBB.1.5) COVID-19 vaccination for all persons aged ≥6 months to prevent COVID-19, including severe disease. However, few estimates of updated vaccine effectiveness (VE) against medically attended illness are available. This analysis evaluated VE of an updated COVID-19 vaccine dose against COVID-19-associated emergency department (ED) or urgent care (UC) encounters and hospitalization among immunocompetent adults aged ≥18 years during September 2023-January 2024 using a test-negative, case-control design with data from two CDC VE networks. VE against COVID-19-associated ED/UC encounters was 51% (95% CI = 47%-54%) during the first 7-59 days after an updated dose and 39% (95% CI = 33%-45%) during the 60-119 days after an updated dose. VE estimates against COVID-19-associated hospitalization from two CDC VE networks were 52% (95% CI = 47%-57%) and 43% (95% CI = 27%-56%), with a median interval from updated dose of 42 and 47 days, respectively. Updated COVID-19 vaccine provided increased protection against COVID-19-associated ED/UC encounters and hospitalization among immunocompetent adults. These results support CDC recommendations for updated 2023-2024 COVID-19 vaccination. All persons aged ≥6 months should receive updated 2023-2024 COVID-19 vaccine.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Adolescent , COVID-19/epidemiology , COVID-19/prevention & control , Advisory Committees , Emergency Service, Hospital , Hospitalization
5.
J Infect Dis ; 228(2): 185-195, 2023 07 14.
Article in English | MEDLINE | ID: mdl-36683410

ABSTRACT

BACKGROUND: Following historically low influenza activity during the 2020-2021 season, the United States saw an increase in influenza circulating during the 2021-2022 season. Most viruses belonged to the influenza A(H3N2) 3C.2a1b 2a.2 subclade. METHODS: We conducted a test-negative case-control analysis among adults ≥18 years of age at 3 sites within the VISION Network. Encounters included emergency department/urgent care (ED/UC) visits or hospitalizations with ≥1 acute respiratory illness (ARI) discharge diagnosis codes and molecular testing for influenza. Vaccine effectiveness (VE) was calculated by comparing the odds of influenza vaccination ≥14 days before the encounter date between influenza-positive cases (type A) and influenza-negative and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-negative controls, applying inverse probability-to-be-vaccinated weights, and adjusting for confounders. RESULTS: In total, 86 732 ED/UC ARI-associated encounters (7696 [9%] cases) and 16 805 hospitalized ARI-associated encounters (649 [4%] cases) were included. VE against influenza-associated ED/UC encounters was 25% (95% confidence interval (CI), 20%-29%) and 25% (95% CI, 11%-37%) against influenza-associated hospitalizations. VE against ED/UC encounters was lower in adults ≥65 years of age (7%; 95% CI, -5% to 17%) or with immunocompromising conditions (4%; 95% CI, -45% to 36%). CONCLUSIONS: During an influenza A(H3N2)-predominant influenza season, modest VE was observed. These findings highlight the need for improved vaccines, particularly for A(H3N2) viruses that are historically associated with lower VE.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Influenza, Human , Adult , Humans , United States/epidemiology , Child, Preschool , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza A Virus, H3N2 Subtype , Seasons , Vaccine Efficacy , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Emergency Service, Hospital , Ambulatory Care , Hospitals , Case-Control Studies
6.
J Infect Dis ; 227(8): 961-969, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36415904

ABSTRACT

BACKGROUND: We assessed coronavirus disease 2019 (COVID-19) vaccination impact on illness severity among adults hospitalized with COVID-19, August 2021-March 2022. METHODS: We evaluated differences in intensive care unit (ICU) admission, in-hospital death, and length of stay among vaccinated (2 or 3 mRNA vaccine doses) versus unvaccinated patients aged ≥18 years hospitalized for ≥24 hours with COVID-19-like illness and positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) molecular testing. We calculated odds ratios (ORs) for ICU admission and death and subdistribution hazard ratios (SHR) for time to hospital discharge adjusted for age, geographic region, calendar time, and local virus circulation. RESULTS: We included 27 149 SARS-CoV-2-positive hospitalizations. During both Delta- and Omicron-predominant periods, protection against ICU admission was strongest among 3-dose vaccinees compared with unvaccinated patients (Delta OR, 0.52 [95% CI, .28-.96]; Omicron OR, 0.69 [95% CI, .54-.87]). During both periods, risk of in-hospital death was lower among vaccinated compared with unvaccinated patients but ORs overlapped across vaccination strata. We observed SHR >1 across all vaccination strata in both periods indicating faster discharge for vaccinated patients. CONCLUSIONS: COVID-19 vaccination was associated with lower rates of ICU admission and in-hospital death in both Delta and Omicron periods compared with being unvaccinated.


Subject(s)
COVID-19 , Humans , Adult , Adolescent , COVID-19/prevention & control , SARS-CoV-2 , COVID-19 Vaccines , Hospital Mortality , mRNA Vaccines
7.
J Infect Dis ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38041853

ABSTRACT

BACKGROUND: The 2022-2023 United States influenza season had unusually early influenza activity with high hospitalization rates. Vaccine-matched A(H3N2) viruses predominated, with lower levels of A(H1N1)pdm09 activity also observed. METHODS: Using the test-negative design, we evaluated influenza vaccine effectiveness (VE) during the 2022-2023 season against influenza-A-associated emergency department/urgent care (ED/UC) visits and hospitalizations from October 2022-March 2023 among adults (age ≥18 years) with acute respiratory illness (ARI). VE was estimated by comparing odds of seasonal influenza vaccination among case-patients (influenza A test-positive by molecular assay) and controls (influenza test-negative), applying inverse-propensity-to-be-vaccinated weights. RESULTS: The analysis included 85,389 ED/UC ARI encounters (17.0% influenza-A-positive; 37.8% vaccinated overall) and 19,751 hospitalizations (9.5% influenza-A-positive; 52.8% vaccinated overall). VE against influenza-A-associated ED/UC encounters was 44% (95% confidence interval [95%CI]: 40-47%) overall and 45% and 41% among adults aged 18-64 and ≥65 years, respectively. VE against influenza-A-associated hospitalizations was 35% (95%CI: 27-43%) overall and 23% and 41% among adults aged 18-64 and ≥65 years, respectively. CONCLUSIONS: VE was moderate during the 2022-2023 influenza season, a season characterized with increased burden of influenza and co-circulation with other respiratory viruses. Vaccination is likely to substantially reduce morbidity, mortality, and strain on healthcare resources.

8.
Clin Infect Dis ; 76(9): 1615-1625, 2023 05 03.
Article in English | MEDLINE | ID: mdl-36611252

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) vaccination coverage remains lower in communities with higher social vulnerability. Factors such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure risk and access to healthcare are often correlated with social vulnerability and may therefore contribute to a relationship between vulnerability and observed vaccine effectiveness (VE). Understanding whether these factors impact VE could contribute to our understanding of real-world VE. METHODS: We used electronic health record data from 7 health systems to assess vaccination coverage among patients with medically attended COVID-19-like illness. We then used a test-negative design to assess VE for 2- and 3-dose messenger RNA (mRNA) adult (≥18 years) vaccine recipients across Social Vulnerability Index (SVI) quartiles. SVI rankings were determined by geocoding patient addresses to census tracts; rankings were grouped into quartiles for analysis. RESULTS: In July 2021, primary series vaccination coverage was higher in the least vulnerable quartile than in the most vulnerable quartile (56% vs 36%, respectively). In February 2022, booster dose coverage among persons who had completed a primary series was higher in the least vulnerable quartile than in the most vulnerable quartile (43% vs 30%). VE among 2-dose and 3-dose recipients during the Delta and Omicron BA.1 periods of predominance was similar across SVI quartiles. CONCLUSIONS: COVID-19 vaccination coverage varied substantially by SVI. Differences in VE estimates by SVI were minimal across groups after adjusting for baseline patient factors. However, lower vaccination coverage among more socially vulnerable groups means that the burden of illness is still disproportionately borne by the most socially vulnerable populations.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/epidemiology , COVID-19/prevention & control , Social Vulnerability , SARS-CoV-2 , COVID-19 Vaccines , Vaccination Coverage , Vaccine Efficacy
9.
MMWR Morb Mortal Wkly Rep ; 72(33): 886-892, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37590187

ABSTRACT

On June 19, 2022, the original monovalent mRNA COVID-19 vaccines were approved as a primary series for children aged 6 months-4 years (Pfizer-BioNTech) and 6 months-5 years (Moderna) based on safety, immunobridging, and limited efficacy data from clinical trials. On December 9, 2022, CDC expanded recommendations for use of updated bivalent vaccines to children aged ≥6 months. mRNA COVID-19 vaccine effectiveness (VE) against emergency department or urgent care (ED/UC) encounters was evaluated within the VISION Network during July 4, 2022-June 17, 2023, among children with COVID-19-like illness aged 6 months-5 years. Among children aged 6 months-5 years who received molecular SARS-CoV-2 testing during August 1, 2022-June 17, 2023, VE of 2 monovalent Moderna doses against ED/UC encounters was 29% (95% CI = 12%-42%) ≥14 days after dose 2 (median = 100 days after dose 2; IQR = 63-155 days). Among children aged 6 months-4 years with a COVID-19-like illness who received molecular testing during September 19, 2022-June 17, 2023, VE of 3 monovalent Pfizer-BioNTech doses was 43% (95% CI = 17%-61%) ≥14 days after dose 3 (median = 75 days after dose 3; IQR = 40-139 days). Effectiveness of ≥1 bivalent dose, comparing children with at least a complete primary series and ≥1 bivalent dose to unvaccinated children, irrespective of vaccine manufacturer, was 80% (95% CI = 42%-96%) among children aged 6 months-5 years a median of 58 days (IQR = 32-83 days) after the dose. All children should stay up to date with recommended COVID-19 vaccines, including initiation of COVID-19 vaccination immediately when they are eligible.


Subject(s)
COVID-19 , United States/epidemiology , Child , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Vaccines, Combined , COVID-19 Testing , SARS-CoV-2/genetics , Emergency Service, Hospital , RNA, Messenger , mRNA Vaccines
10.
MMWR Morb Mortal Wkly Rep ; 72(21): 579-588, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37227984

ABSTRACT

On September 1, 2022, CDC's Advisory Committee on Immunization Practices (ACIP) recommended a single bivalent mRNA COVID-19 booster dose for persons aged ≥12 years who had completed at least a monovalent primary series. Early vaccine effectiveness (VE) estimates among adults aged ≥18 years showed receipt of a bivalent booster dose provided additional protection against COVID-19-associated emergency department and urgent care visits and hospitalizations compared with that in persons who had received only monovalent vaccine doses (1); however, insufficient time had elapsed since bivalent vaccine authorization to assess the durability of this protection. The VISION Network* assessed VE against COVID-19-associated hospitalizations by time since bivalent vaccine receipt during September 13, 2022-April 21, 2023, among adults aged ≥18 years with and without immunocompromising conditions. During the first 7-59 days after vaccination, compared with no vaccination, VE for receipt of a bivalent vaccine dose among adults aged ≥18 years was 62% (95% CI = 57%-67%) among adults without immunocompromising conditions and 28% (95% CI = 10%-42%) among adults with immunocompromising conditions. Among adults without immunocompromising conditions, VE declined to 24% (95% CI = 12%-33%) among those aged ≥18 years by 120-179 days after vaccination. VE was generally lower for adults with immunocompromising conditions. A bivalent booster dose provided the highest protection, and protection was sustained through at least 179 days against critical outcomes, including intensive care unit (ICU) admission or in-hospital death. These data support updated recommendations allowing additional optional bivalent COVID-19 vaccine doses for certain high-risk populations. All eligible persons should stay up to date with recommended COVID-19 vaccines.


Subject(s)
COVID-19 , Critical Illness , Hospitalization , Adolescent , Adult , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , Hospital Mortality , mRNA Vaccines , Vaccines, Combined
11.
MMWR Morb Mortal Wkly Rep ; 71(53): 1637-1646, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36921274

ABSTRACT

During June-October 2022, the SARS-CoV-2 Omicron BA.5 sublineage accounted for most of the sequenced viral genomes in the United States, with further Omicron sublineage diversification through November 2022.* Bivalent mRNA vaccines contain an ancestral SARS-CoV-2 strain component plus an updated component of the Omicron BA.4/BA.5 sublineages. On September 1, 2022, a single bivalent booster dose was recommended for adults who had completed a primary vaccination series (with or without subsequent booster doses), with the last dose administered ≥2 months earlier (1). During September 13-November 18, the VISION Network evaluated vaccine effectiveness (VE) of a bivalent mRNA booster dose (after 2, 3, or 4 monovalent doses) compared with 1) no previous vaccination and 2) previous receipt of 2, 3, or 4 monovalent-only mRNA vaccine doses, among immunocompetent adults aged ≥18 years with an emergency department/urgent care (ED/UC) encounter or hospitalization for a COVID-19-like illness.† VE of a bivalent booster dose (after 2, 3, or 4 monovalent doses) against COVID-19-associated ED/UC encounters was 56% compared with no vaccination, 32% compared with monovalent vaccination only with last dose 2-4 months earlier, and 50% compared with monovalent vaccination only with last dose ≥11 months earlier. VE of a bivalent booster dose (after 2, 3, or 4 monovalent doses) against COVID-19-associated hospitalizations was 59% compared with no vaccination, 42% compared with monovalent vaccination only with last dose 5-7 months earlier, and 48% compared with monovalent vaccination only with last dose ≥11 months earlier. Bivalent vaccines administered after 2, 3, or 4 monovalent doses were effective in preventing medically attended COVID-19 compared with no vaccination and provided additional protection compared with past monovalent vaccination only, with relative protection increasing with time since receipt of the last monovalent dose. All eligible persons should stay up to date with recommended COVID-19 vaccinations, including receiving a bivalent booster dose. Persons should also consider taking additional precautions to avoid respiratory illness this winter season, such as masking in public indoor spaces, especially in areas where COVID-19 community levels are high.


Subject(s)
COVID-19 , Humans , Adult , Adolescent , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics , Vaccine Efficacy , Emergency Service, Hospital , Hospitalization , RNA, Messenger , Vaccines, Combined
12.
MMWR Morb Mortal Wkly Rep ; 71(29): 931-939, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35862287

ABSTRACT

The Omicron variant (B.1.1.529) of SARS-CoV-2, the virus that causes COVID-19, was first identified in the United States in November 2021, with the BA.1 sublineage (including BA.1.1) causing the largest surge in COVID-19 cases to date. Omicron sublineages BA.2 and BA.2.12.1 emerged later and by late April 2022, accounted for most cases.* Estimates of COVID-19 vaccine effectiveness (VE) can be reduced by newly emerging variants or sublineages that evade vaccine-induced immunity (1), protection from previous SARS-CoV-2 infection in unvaccinated persons (2), or increasing time since vaccination (3). Real-world data comparing VE during the periods when the BA.1 and BA.2/BA.2.12.1 predominated (BA.1 period and BA.2/BA.2.12.1 period, respectively) are limited. The VISION network† examined 214,487 emergency department/urgent care (ED/UC) visits and 58,782 hospitalizations with a COVID-19-like illness§ diagnosis among 10 states during December 18, 2021-June 10, 2022, to evaluate VE of 2, 3, and 4 doses of mRNA COVID-19 vaccines (BNT162b2 [Pfizer-BioNTech] or mRNA-1273 [Moderna]) compared with no vaccination among adults without immunocompromising conditions. VE against COVID-19-associated hospitalization 7-119 days and ≥120 days after receipt of dose 3 was 92% (95% CI = 91%-93%) and 85% (95% CI = 81%-89%), respectively, during the BA.1 period, compared with 69% (95% CI = 58%-76%) and 52% (95% CI = 44%-59%), respectively, during the BA.2/BA.2.12.1 period. Patterns were similar for ED/UC encounters. Among adults aged ≥50 years, VE against COVID-19-associated hospitalization ≥120 days after receipt of dose 3 was 55% (95% CI = 46%-62%) and ≥7 days (median = 27 days) after a fourth dose was 80% (95% CI = 71%-85%) during BA.2/BA.2.12.1 predominance. Immunocompetent persons should receive recommended COVID-19 booster doses to prevent moderate to severe COVID-19, including a first booster dose for all eligible persons and second booster dose for adults aged ≥50 years at least 4 months after an initial booster dose. Booster doses should be obtained immediately when persons become eligible.¶.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Adult , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics , United States/epidemiology , Vaccines, Synthetic , mRNA Vaccines
13.
MMWR Morb Mortal Wkly Rep ; 71(9): 352-358, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35239634

ABSTRACT

The efficacy of the BNT162b2 (Pfizer-BioNTech) vaccine against laboratory-confirmed COVID-19 exceeded 90% in clinical trials that included children and adolescents aged 5-11, 12-15, and 16-17 years (1-3). Limited real-world data on 2-dose mRNA vaccine effectiveness (VE) in persons aged 12-17 years (referred to as adolescents in this report) have also indicated high levels of protection against SARS-CoV-2 (the virus that causes COVID-19) infection and COVID-19-associated hospitalization (4-6); however, data on VE against the SARS-CoV-2 B.1.1.529 (Omicron) variant and duration of protection are limited. Pfizer-BioNTech VE data are not available for children aged 5-11 years. In partnership with CDC, the VISION Network* examined 39,217 emergency department (ED) and urgent care (UC) encounters and 1,699 hospitalizations† among persons aged 5-17 years with COVID-19-like illness across 10 states during April 9, 2021-January 29, 2022,§ to estimate VE using a case-control test-negative design. Among children aged 5-11 years, VE against laboratory-confirmed COVID-19-associated ED and UC encounters 14-67 days after dose 2 (the longest interval after dose 2 in this age group) was 46%. Among adolescents aged 12-15 and 16-17 years, VE 14-149 days after dose 2 was 83% and 76%, respectively; VE ≥150 days after dose 2 was 38% and 46%, respectively. Among adolescents aged 16-17 years, VE increased to 86% ≥7 days after dose 3 (booster dose). VE against COVID-19-associated ED and UC encounters was substantially lower during the Omicron predominant period than the B.1.617.2 (Delta) predominant period among adolescents aged 12-17 years, with no significant protection ≥150 days after dose 2 during Omicron predominance. However, in adolescents aged 16-17 years, VE during the Omicron predominant period increased to 81% ≥7 days after a third booster dose. During the full study period, including pre-Delta, Delta, and Omicron predominant periods, VE against laboratory-confirmed COVID-19-associated hospitalization among children aged 5-11 years was 74% 14-67 days after dose 2, with wide CIs that included zero. Among adolescents aged 12-15 and 16-17 years, VE 14-149 days after dose 2 was 92% and 94%, respectively; VE ≥150 days after dose 2 was 73% and 88%, respectively. All eligible children and adolescents should remain up to date with recommended COVID-19 vaccinations, including a booster dose for those aged 12-17 years.


Subject(s)
BNT162 Vaccine/administration & dosage , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccine Efficacy/statistics & numerical data , Adolescent , Ambulatory Care/statistics & numerical data , Child , Child, Preschool , Emergency Service, Hospital/statistics & numerical data , Female , Hospitalization/statistics & numerical data , Humans , Immunization, Secondary , Male , United States
14.
MMWR Morb Mortal Wkly Rep ; 71(7): 255-263, 2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35176007

ABSTRACT

CDC recommends that all persons aged ≥12 years receive a booster dose of COVID-19 mRNA vaccine ≥5 months after completion of a primary mRNA vaccination series and that immunocompromised persons receive a third primary dose.* Waning of vaccine protection after 2 doses of mRNA vaccine has been observed during the period of the SARS-CoV-2 B.1.617.2 (Delta) variant predominance† (1-5), but little is known about durability of protection after 3 doses during periods of Delta or SARS-CoV-2 B.1.1.529 (Omicron) variant predominance. A test-negative case-control study design using data from eight VISION Network sites§ examined vaccine effectiveness (VE) against COVID-19 emergency department/urgent care (ED/UC) visits and hospitalizations among U.S. adults aged ≥18 years at various time points after receipt of a second or third vaccine dose during two periods: Delta variant predominance and Omicron variant predominance (i.e., periods when each variant accounted for ≥50% of sequenced isolates).¶ Persons categorized as having received 3 doses included those who received a third dose in a primary series or a booster dose after a 2 dose primary series (including the reduced-dosage Moderna booster). The VISION Network analyzed 241,204 ED/UC encounters** and 93,408 hospitalizations across 10 states during August 26, 2021-January 22, 2022. VE after receipt of both 2 and 3 doses was lower during the Omicron-predominant than during the Delta-predominant period at all time points evaluated. During both periods, VE after receipt of a third dose was higher than that after a second dose; however, VE waned with increasing time since vaccination. During the Omicron period, VE against ED/UC visits was 87% during the first 2 months after a third dose and decreased to 66% among those vaccinated 4-5 months earlier; VE against hospitalizations was 91% during the first 2 months following a third dose and decreased to 78% ≥4 months after a third dose. For both Delta- and Omicron-predominant periods, VE was generally higher for protection against hospitalizations than against ED/UC visits. All eligible persons should remain up to date with recommended COVID-19 vaccinations to best protect against COVID-19-associated hospitalizations and ED/UC visits.


Subject(s)
Ambulatory Care/statistics & numerical data , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Hospitalization/statistics & numerical data , SARS-CoV-2/immunology , Vaccine Efficacy , mRNA Vaccines/administration & dosage , Adult , Aged , Aged, 80 and over , Case-Control Studies , Emergency Service, Hospital , Female , Humans , Male , Middle Aged , Time Factors , United States , Young Adult
15.
MMWR Morb Mortal Wkly Rep ; 71(13): 495-502, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35358170

ABSTRACT

CDC recommends that all persons aged ≥18 years receive a single COVID-19 vaccine booster dose ≥2 months after receipt of an Ad.26.COV2.S (Janssen [Johnson & Johnson]) adenovirus vector-based primary series vaccine; a heterologous COVID-19 mRNA vaccine is preferred over a homologous (matching) Janssen vaccine for booster vaccination. This recommendation was made in light of the risks for rare but serious adverse events following receipt of a Janssen vaccine, including thrombosis with thrombocytopenia syndrome and Guillain-Barré syndrome† (1), and clinical trial data indicating similar or higher neutralizing antibody response following heterologous boosting compared with homologous boosting (2). Data on real-world vaccine effectiveness (VE) of different booster strategies following a primary Janssen vaccine dose are limited, particularly during the period of Omicron variant predominance. The VISION Network§ determined real-world VE of 1 Janssen vaccine dose and 2 alternative booster dose strategies: 1) a homologous booster (i.e., 2 Janssen doses) and 2) a heterologous mRNA booster (i.e., 1 Janssen dose/1 mRNA dose). In addition, VE of these booster strategies was compared with VE of a homologous booster following mRNA primary series vaccination (i.e., 3 mRNA doses). The study examined 80,287 emergency department/urgent care (ED/UC) visits¶ and 25,244 hospitalizations across 10 states during December 16, 2021-March 7, 2022, when Omicron was the predominant circulating variant.** VE against laboratory-confirmed COVID-19-associated ED/UC encounters was 24% after 1 Janssen dose, 54% after 2 Janssen doses, 79% after 1 Janssen/1 mRNA dose, and 83% after 3 mRNA doses. VE for the same vaccination strategies against laboratory-confirmed COVID-19-associated hospitalizations were 31%, 67%, 78%, and 90%, respectively. All booster strategies provided higher protection than a single Janssen dose against ED/UC visits and hospitalizations during Omicron variant predominance. Vaccination with 1 Janssen/1 mRNA dose provided higher protection than did 2 Janssen doses against COVID-19-associated ED/UC visits and was comparable to protection provided by 3 mRNA doses during the first 120 days after a booster dose. However, 3 mRNA doses provided higher protection against COVID-19-associated hospitalizations than did other booster strategies during the same time interval since booster dose. All adults who have received mRNA vaccines for their COVID-19 primary series vaccination should receive an mRNA booster dose when eligible. Adults who received a primary Janssen vaccine dose should preferentially receive a heterologous mRNA vaccine booster dose ≥2 months later, or a homologous Janssen vaccine booster dose if mRNA vaccine is contraindicated or unavailable. Further investigation of the durability of protection afforded by different booster strategies is warranted.


Subject(s)
COVID-19 , Influenza Vaccines , Adolescent , Adult , Ambulatory Care , COVID-19/prevention & control , COVID-19 Vaccines , Emergency Service, Hospital , Hospitalization , Humans , Immunization, Secondary , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
16.
MMWR Morb Mortal Wkly Rep ; 71(42): 1335-1342, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36264840

ABSTRACT

Persons with moderate-to-severe immunocompromising conditions might have reduced protection after COVID-19 vaccination, compared with persons without immunocompromising conditions (1-3). On August 13, 2021, the Advisory Committee on Immunization Practices (ACIP) recommended that adults with immunocompromising conditions receive an expanded primary series of 3 doses of an mRNA COVID-19 vaccine. ACIP followed with recommendations on September 23, 2021, for a fourth (booster) dose and on September 1, 2022, for a new bivalent mRNA COVID-19 vaccine booster dose, containing components of the BA.4 and BA.5 sublineages of the Omicron (B.1.1.529) variant (4). Data on vaccine effectiveness (VE) of monovalent COVID-19 vaccines among persons with immunocompromising conditions since the emergence of the Omicron variant in December 2021 are limited. In the multistate VISION Network,§ monovalent 2-, 3-, and 4-dose mRNA VE against COVID-19-related hospitalization were estimated among adults with immunocompromising conditions¶ hospitalized with COVID-19-like illness,** using a test-negative design comparing odds of previous vaccination among persons with a positive or negative molecular test result (case-patients and control-patients) for SARS-CoV-2 (the virus that causes COVID-19). During December 16, 2021-August 20, 2022, among SARS-CoV-2 test-positive case-patients, 1,815 (36.3%), 1,387 (27.7%), 1,552 (31.0%), and 251 (5.0%) received 0, 2, 3, and 4 mRNA COVID-19 vaccine doses, respectively. Among test-negative control-patients during this period, 6,928 (23.7%), 7,411 (25.4%), 12,734 (43.6%), and 2,142 (7.3%) received these respective doses. Overall, VE against COVID-19-related hospitalization among adults with immunocompromising conditions hospitalized for COVID-like illness during Omicron predominance was 36% ≥14 days after dose 2, 69% 7-89 days after dose 3, and 44% ≥90 days after dose 3. Restricting the analysis to later periods when Omicron sublineages BA.2/BA.2.12.1 and BA.4/BA.5 were predominant and 3-dose recipients were eligible to receive a fourth dose, VE was 32% ≥90 days after dose 3 and 43% ≥7 days after dose 4. Protection offered by vaccination among persons with immunocompromising conditions during Omicron predominance was moderate even after a 3-dose monovalent primary series or booster dose. Given the incomplete protection against hospitalization afforded by monovalent COVID-19 vaccines, persons with immunocompromising conditions might benefit from updated bivalent vaccine booster doses that target recently circulating Omicron sublineages, in line with ACIP recommendations. Further, additional protective recommendations for persons with immunocompromising conditions, including the use of prophylactic antibody therapy, early access to and use of antivirals, and enhanced nonpharmaceutical interventions such as well-fitting masks or respirators, should also be considered.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Antiviral Agents , Hospitalization , Vaccines, Combined , RNA, Messenger , mRNA Vaccines
17.
MMWR Morb Mortal Wkly Rep ; 71(4): 139-145, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35085224

ABSTRACT

Estimates of COVID-19 mRNA vaccine effectiveness (VE) have declined in recent months (1,2) because of waning vaccine induced immunity over time,* possible increased immune evasion by SARS-CoV-2 variants (3), or a combination of these and other factors. CDC recommends that all persons aged ≥12 years receive a third dose (booster) of an mRNA vaccine ≥5 months after receipt of the second mRNA vaccine dose and that immunocompromised individuals receive a third primary dose.† A third dose of BNT162b2 (Pfizer-BioNTech) COVID-19 vaccine increases neutralizing antibody levels (4), and three recent studies from Israel have shown improved effectiveness of a third dose in preventing COVID-19 associated with infections with the SARS-CoV-2 B.1.617.2 (Delta) variant (5-7). Yet, data are limited on the real-world effectiveness of third doses of COVID-19 mRNA vaccine in the United States, especially since the SARS-CoV-2 B.1.1.529 (Omicron) variant became predominant in mid-December 2021. The VISION Network§ examined VE by analyzing 222,772 encounters from 383 emergency departments (EDs) and urgent care (UC) clinics and 87,904 hospitalizations from 259 hospitals among adults aged ≥18 years across 10 states from August 26, 2021¶ to January 5, 2022. Analyses were stratified by the period before and after the Omicron variant became the predominant strain (>50% of sequenced viruses) at each study site. During the period of Delta predominance across study sites in the United States (August-mid-December 2021), VE against laboratory-confirmed COVID-19-associated ED and UC encounters was 86% 14-179 days after dose 2, 76% ≥180 days after dose 2, and 94% ≥14 days after dose 3. Estimates of VE for the same intervals after vaccination during Omicron variant predominance were 52%, 38%, and 82%, respectively. During the period of Delta variant predominance, VE against laboratory-confirmed COVID-19-associated hospitalizations was 90% 14-179 days after dose 2, 81% ≥180 days after dose 2, and 94% ≥14 days after dose 3. During Omicron variant predominance, VE estimates for the same intervals after vaccination were 81%, 57%, and 90%, respectively. The highest estimates of VE against COVID-19-associated ED and UC encounters or hospitalizations during both Delta- and Omicron-predominant periods were among adults who received a third dose of mRNA vaccine. All unvaccinated persons should get vaccinated as soon as possible. All adults who have received mRNA vaccines during their primary COVID-19 vaccination series should receive a third dose when eligible, and eligible persons should stay up to date with COVID-19 vaccinations.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization, Secondary , SARS-CoV-2/immunology , Vaccine Efficacy/statistics & numerical data , mRNA Vaccines/administration & dosage , Adult , Aged , Aged, 80 and over , Ambulatory Care/statistics & numerical data , Emergency Service, Hospital/statistics & numerical data , Female , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , United States/epidemiology
18.
MMWR Morb Mortal Wkly Rep ; 71(5152): 1616-1624, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36580430

ABSTRACT

During June-October 2022, the SARS-CoV-2 Omicron BA.5 sublineage accounted for most of the sequenced viral genomes in the United States, with further Omicron sublineage diversification through November 2022.* Bivalent mRNA vaccines contain an ancestral SARS-CoV-2 strain component plus an updated component of the Omicron BA.4/BA.5 sublineages. On September 1, 2022, a single bivalent booster dose was recommended for adults who had completed a primary vaccination series (with or without subsequent booster doses), with the last dose administered ≥2 months earlier (1). During September 13-November 18, the VISION Network evaluated vaccine effectiveness (VE) of a bivalent mRNA booster dose (after 2, 3, or 4 monovalent doses) compared with 1) no previous vaccination and 2) previous receipt of 2, 3, or 4 monovalent-only mRNA vaccine doses, among immunocompetent adults aged ≥18 years with an emergency department/urgent care (ED/UC) encounter or hospitalization for a COVID-19-like illness.† VE of a bivalent booster dose (after 2, 3, or 4 monovalent doses) against COVID-19-associated ED/UC encounters was 56% compared with no vaccination, 31% compared with monovalent vaccination only with last dose 2-4 months earlier, and 50% compared with monovalent vaccination only with last dose ≥11 months earlier. VE of a bivalent booster dose (after 2, 3, or 4 monovalent doses) against COVID-19-associated hospitalizations was 57% compared with no vaccination, 38% compared with monovalent vaccination only with last dose 5-7 months earlier, and 45% compared with monovalent vaccination only with last dose ≥11 months earlier. Bivalent vaccines administered after 2, 3, or 4 monovalent doses were effective in preventing medically attended COVID-19 compared with no vaccination and provided additional protection compared with past monovalent vaccination only, with relative protection increasing with time since receipt of the last monovalent dose. All eligible persons should stay up to date with recommended COVID-19 vaccinations, including receiving a bivalent booster dose. Persons should also consider taking additional precautions to avoid respiratory illness this winter season, such as masking in public indoor spaces, especially in areas where COVID-19 community levels are high.


Subject(s)
COVID-19 , Humans , Adult , Adolescent , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics , Vaccine Efficacy , Emergency Service, Hospital , Hospitalization , RNA, Messenger , Vaccines, Combined
19.
MMWR Morb Mortal Wkly Rep ; 70(37): 1291-1293, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34529642

ABSTRACT

Data on COVID-19 vaccine effectiveness (VE) since the B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19, became the predominant circulating strain in the United States are limited (1-3). CDC used the VISION Network* to examine medical encounters (32,867) from 187 hospitals and 221 emergency departments (EDs) and urgent care (UC) clinics across nine states during June-August 2021, beginning on the date the Delta variant accounted for >50% of sequenced isolates in each medical facility's state. VISION Network methods have been published (4).


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2 , Adolescent , Adult , Aged , Ambulatory Care Facilities/statistics & numerical data , COVID-19/epidemiology , COVID-19/therapy , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Emergency Service, Hospital/statistics & numerical data , Hospitalization/statistics & numerical data , Humans , Middle Aged , United States/epidemiology , Young Adult
20.
MMWR Morb Mortal Wkly Rep ; 70(44): 1539-1544, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34735425

ABSTRACT

Previous infection with SARS-CoV-2 (the virus that causes COVID-19) or COVID-19 vaccination can provide immunity and protection from subsequent SARS-CoV-2 infection and illness. CDC used data from the VISION Network* to examine hospitalizations in adults with COVID-19-like illness and compared the odds of receiving a positive SARS-CoV-2 test result, and thus having laboratory-confirmed COVID-19, between unvaccinated patients with a previous SARS-CoV-2 infection occurring 90-179 days before COVID-19-like illness hospitalization, and patients who were fully vaccinated with an mRNA COVID-19 vaccine 90-179 days before hospitalization with no previous documented SARS-CoV-2 infection. Hospitalized adults aged ≥18 years with COVID-19-like illness were included if they had received testing at least twice: once associated with a COVID-19-like illness hospitalization during January-September 2021 and at least once earlier (since February 1, 2020, and ≥14 days before that hospitalization). Among COVID-19-like illness hospitalizations in persons whose previous infection or vaccination occurred 90-179 days earlier, the odds of laboratory-confirmed COVID-19 (adjusted for sociodemographic and health characteristics) among unvaccinated, previously infected adults were higher than the odds among fully vaccinated recipients of an mRNA COVID-19 vaccine with no previous documented infection (adjusted odds ratio [aOR] = 5.49; 95% confidence interval [CI] = 2.75-10.99). These findings suggest that among hospitalized adults with COVID-19-like illness whose previous infection or vaccination occurred 90-179 days earlier, vaccine-induced immunity was more protective than infection-induced immunity against laboratory-confirmed COVID-19. All eligible persons should be vaccinated against COVID-19 as soon as possible, including unvaccinated persons previously infected with SARS-CoV-2.


Subject(s)
COVID-19/diagnosis , COVID-19/immunology , SARS-CoV-2/isolation & purification , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/therapy , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Female , Hospitalization/statistics & numerical data , Humans , Laboratories , Male , Middle Aged , SARS-CoV-2/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Young Adult , mRNA Vaccines
SELECTION OF CITATIONS
SEARCH DETAIL