Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Eur J Neurosci ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085986

ABSTRACT

Diffusion-based tractography in the optic nerve requires sampling strategies assisted by anatomical landmark information (regions of interest [ROIs]). We aimed to investigate the feasibility of expert-placed, high-resolution T1-weighted ROI-data transfer onto lower spatial resolution diffusion-weighted images. Slab volumes from 20 volunteers were acquired and preprocessed including distortion bias correction and artifact reduction. Constrained spherical deconvolution was used to generate a directional diffusion information grid (fibre orientation distribution-model [FOD]). Three neuroradiologists marked landmarks on both diffusion imaging variants and structural datasets. Structural ROI information (volumetric interpolated breath-hold sequence [VIBE]) was respectively registered (linear with 6/12 degrees of freedom [DOF]) onto single-shot EPI (ss-EPI) and readout-segmented EPI (rs-EPI) volumes, respectively. All eight ROI/FOD-combinations were compared in a targeted tractography task of the optic nerve pathway. Inter-rater reliability for placed ROIs among experts was highest in VIBE images (lower confidence interval 0.84 to 0.97, mean 0.91) and lower in both ss-EPI (0.61 to 0.95, mean 0.79) and rs-EPI (0.59 to 0.86, mean 0.70). Tractography success rate based on streamline selection performance was highest in VIBE-drawn ROIs registered (6-DOF) onto rs-EPI FOD (70.0% over 5%-threshold, capped to failed ratio 39/16) followed by both 12-DOF-registered (67.5%; 41/16) and nonregistered VIBE (67.5%; 40/23). On ss-EPI FOD, VIBE-ROI-datasets obtained fewer streamlines overall with each at 55.0% above 5%-threshold and with lower capped to failed ratio (6-DOF: 35/36; 12-DOF: 34/34, nonregistered 33/36). The combination of VIBE-placed ROIs (highest inter-rater reliability) with 6-DOF registration onto rs-EPI targets (best streamline selection performance) is most suitable for white matter template generation required in group studies.

2.
Radiology ; 310(2): e231938, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38376403

ABSTRACT

Background Deep learning (DL)-accelerated MRI can substantially reduce examination times. However, studies prospectively evaluating the diagnostic performance of DL-accelerated MRI reconstructions in acute suspected stroke are lacking. Purpose To investigate the interchangeability of DL-accelerated MRI with conventional MRI in patients with suspected acute ischemic stroke at 1.5 T. Materials and Methods In this prospective study, 211 participants with suspected acute stroke underwent clinically indicated MRI at 1.5 T between June 2022 and March 2023. For each participant, conventional MRI (including T1-weighted, T2-weighted, T2*-weighted, T2 fluid-attenuated inversion-recovery, and diffusion-weighted imaging; 14 minutes 18 seconds) and DL-accelerated MRI (same sequences; 3 minutes 4 seconds) were performed. The primary end point was the interchangeability between conventional and DL-accelerated MRI for acute ischemic infarction detection. Secondary end points were interchangeability regarding the affected vascular territory and clinically relevant secondary findings (eg, microbleeds, neoplasm). Three readers evaluated the overall occurrence of acute ischemic stroke, affected vascular territory, clinically relevant secondary findings, overall image quality, and diagnostic confidence. For acute ischemic lesions, size and signal intensities were assessed. The margin for interchangeability was chosen as 5%. For interrater agreement analysis and interrater reliability analysis, multirater Fleiss κ and the intraclass correlation coefficient, respectively, was determined. Results The study sample consisted of 211 participants (mean age, 65 years ± 16 [SD]); 123 male and 88 female). Acute ischemic stroke was confirmed in 79 participants. Interchangeability was demonstrated for all primary and secondary end points. No individual equivalence indexes (IEIs) exceeded the interchangeability margin of 5% (IEI, -0.002 [90% CI: -0.007, 0.004]). Almost perfect interrater agreement was observed (P > .91). DL-accelerated MRI provided higher overall image quality (P < .001) and diagnostic confidence (P < .001). The signal properties of acute ischemic infarctions were similar in both techniques and demonstrated good to excellent interrater reliability (intraclass correlation coefficient, ≥0.8). Conclusion Despite being four times faster, DL-accelerated brain MRI was interchangeable with conventional MRI for acute ischemic lesion detection. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Haller in this issue.


Subject(s)
Deep Learning , Ischemic Stroke , Stroke , Humans , Female , Male , Aged , Ischemic Stroke/diagnostic imaging , Prospective Studies , Reproducibility of Results , Magnetic Resonance Imaging , Brain/diagnostic imaging , Stroke/diagnostic imaging
3.
BMJ Open ; 14(3): e079625, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38458813

ABSTRACT

OBJECTIVES: A hard lockdown was presumed to lead to delayed diagnosis and treatment of serious diseases, resulting in higher acuity at admission. This should be elaborated based on the estimated acuity of the cases, changes in findings during hospitalisation, age structure and biological sex. DESIGN: Retrospective monocentric cross-sectional study. SETTING: German Neuroradiology Department at a . PARTICIPANTS: In 2019, n=1158 patients were admitted in contrast to n=884 during the first hard lockdown in 2020 (11th-13th week). MAIN OUTCOME MEASURES: Three radiologists evaluated the initial case acuity, classified them into three groups (not acute, subacute and acute), and evaluated if there was a relevant clinical deterioration. The data analysis was conducted using non-parametric methods and multivariate regression analysis. RESULTS: A 24% decrease in the number of examinations from 2019 to 2020 (p=0.025) was revealed. In women, the case acuity increased by 21% during the lockdown period (p=0.002). A 30% decrease in acute cases in men was observable (in women 5% decrease). Not acute cases decreased in both women and men (47%; 24%), while the subacute cases remained stable in men (0%) and decreased in women (28%). Regression analysis revealed the higher the age, the higher the acuity (p<0.001 in both sexes), particularly among women admitted during the lockdown period (p=0.006). CONCLUSION: The lockdown led to a decrease in neuroradiological consultations, with delays in seeking medical care. In women, the number of most severe cases remained stable, whereas the mean case acuity and age increased. This could be due to greater pandemic-related anxiety among women, however, with severe symptoms they were seeking for medical help. In contrast in men, the absolute number of most severe cases decreased, whereas the mean acuity and age remained nearly unaffected. This could be attributable to a reduced willingness to seek for medical consultation.


Subject(s)
COVID-19 , Male , Humans , Female , Cross-Sectional Studies , Retrospective Studies , COVID-19/epidemiology , Communicable Disease Control , Hospitalization , Germany/epidemiology
4.
Acad Radiol ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38521612

ABSTRACT

OBJECTIVES: To investigate the clinical feasibility and image quality of accelerated brain diffusion-weighted imaging (DWI) with deep learning image reconstruction and super resolution. METHODS: 85 consecutive patients with clinically indicated MRI at a 3 T scanner were prospectively included. Conventional diffusion-weighted data (c-DWI) with four averages were obtained. Reconstructions of one and two averages, as well as deep learning diffusion-weighted imaging (DL-DWI), were accomplished. Three experienced readers evaluated the acquired data using a 5-point Likert scale regarding overall image quality, overall contrast, diagnostic confidence, occurrence of artefacts and evaluation of the central region, basal ganglia, brainstem, and cerebellum. To assess interrater agreement, Fleiss' kappa (Ï°) was determined. Signal intensity (SI) levels for basal ganglia and the central region were estimated via automated segmentation, and SI values of detected pathologies were measured. RESULTS: Intracranial pathologies were identified in 35 patients. DL-DWI was significantly superior for all defined parameters, independently from applied averages (p-value <0.001). Optimum image quality was achieved with DL-DWI by utilizing a single average (p-value <0.001), demonstrating very good (80.9%) to excellent image quality (14.5%) in nearly all cases, compared to 12.5% with very good and 0% with excellent image quality for c-MRI (p-value <0.001). Comparable results could be shown for diagnostic confidence. Inter-rater Fleiss' Kappa demonstrated moderate to substantial agreement for virtually all defined parameters, with good accordance, particularly for the assessment of pathologies (p = 0.74). Regarding SI values, no significant difference was found. CONCLUSION: Ultra-fast diffusion-weighted imaging with super resolution is feasible, resulting in highly accelerated brain imaging while increasing diagnostic image quality.

SELECTION OF CITATIONS
SEARCH DETAIL