Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cancer Immunol Immunother ; 71(4): 839-850, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34435232

ABSTRACT

The expression of immune-related genes in cancer cells can alter the anti-tumor immune response and thereby impact patient outcomes. Radiotherapy has been shown to modulate immune-related genes dependent on the fractionation regimen. To identify long-term changes in gene expression after irradiation, PC3 (p53 deleted) and LNCaP (p53 wildtype) prostate cancer cells were irradiated with either a single dose (SD, 10 Gy) or a fractionated regimen (MF) of 10 fractions (1 Gy per fraction). Whole human genome arrays were used to determine gene expression at 24 h and 2 months after irradiation. Immune pathway activation was analyzed with Ingenuity Pathway Analysis software. Additionally, 3D colony formation assays and T-cell cytotoxicity assays were performed. LNCaP had a higher basal expression of immunogenic genes and was more efficiently killed by cytotoxic T-cells compared to PC3. In both cell lines, MF irradiation resulted in an increase in multiple immune-related genes immediately after irradiation, while at 2 months, SD irradiation had a more pronounced effect on radiation-induced gene expression. Both immunogenic and immunosuppressive genes were upregulated in the long term in PC3 cells by a 10 Gy SD irradiation but not in LNCaP. T-cell-mediated cytotoxicity was significantly increased in 10 Gy SD PC3 cells compared to the unirradiated control and could be further enhanced by treatment with immune checkpoint inhibitors. Irradiation impacts the expression of immune-related genes in cancer cells in a fractionation-dependent manner. Understanding and targeting these changes may be a promising strategy for primary prostate cancer and recurrent tumors.


Subject(s)
Neoplasm Recurrence, Local , Prostatic Neoplasms , Apoptosis , Cell Line, Tumor , Humans , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/radiotherapy
2.
Nucleic Acids Res ; 48(3): 1314-1326, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31822909

ABSTRACT

Multifractionated irradiation is the mainstay of radiation treatment in cancer therapy. Yet, little is known about the cellular DNA repair processes that take place between radiation fractions, even though understanding the molecular mechanisms promoting cancer cell recovery and survival could improve patient outcome and identify new avenues for targeted intervention. To address this knowledge gap, we systematically characterized how cells respond differentially to multifractionated and single-dose radiotherapy, using a combination of genetics-based and functional approaches. We found that both cancer cells and normal fibroblasts exhibited enhanced survival after multifractionated irradiation compared with an equivalent single dose of irradiation, and this effect was entirely dependent on 53BP1-mediated NHEJ. Furthermore, we identified RIF1 as the critical effector of 53BP1. Inhibiting 53BP1 recruitment to damaged chromatin completely abolished the survival advantage after multifractionated irradiation and could not be reversed by suppressing excessive end resection. Analysis of the TCGA database revealed lower expression of 53BP1 pathway genes in prostate cancer, suggesting that multifractionated radiotherapy might be a favorable option for radio-oncologic treatment in this tumor type. We propose that elucidation of DNA repair mechanisms elicited by different irradiation dosing regimens could improve radiotherapy selection for the individual patient and maximize the efficacy of radiotherapy.


Subject(s)
Cell Survival/genetics , Prostatic Neoplasms/radiotherapy , Telomere-Binding Proteins/genetics , Tumor Suppressor p53-Binding Protein 1/genetics , Animals , Cell Survival/radiation effects , Chromatin/radiation effects , DNA End-Joining Repair/genetics , DNA Repair/genetics , DNA Repair/radiation effects , Fibroblasts/radiation effects , Gene Expression Regulation, Neoplastic/radiation effects , HeLa Cells , Humans , Male , Mice , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Signal Transduction/radiation effects
3.
Proc Natl Acad Sci U S A ; 115(42): 10756-10761, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30201710

ABSTRACT

Tumor hypoxia reduces the effectiveness of radiation therapy by limiting the biologically effective dose. An acute increase in tumor oxygenation before radiation treatment should therefore significantly improve the tumor cell kill after radiation. Efforts to increase oxygen delivery to the tumor have not shown positive clinical results. Here we show that targeting mitochondrial respiration results in a significant reduction of the tumor cells' demand for oxygen, leading to increased tumor oxygenation and radiation response. We identified an activity of the FDA-approved drug papaverine as an inhibitor of mitochondrial complex I. We also provide genetic evidence that papaverine's complex I inhibition is directly responsible for increased oxygenation and enhanced radiation response. Furthermore, we describe derivatives of papaverine that have the potential to become clinical radiosensitizers with potentially fewer side effects. Importantly, this radiosensitizing strategy will not sensitize well-oxygenated normal tissue, thereby increasing the therapeutic index of radiotherapy.


Subject(s)
Cell Hypoxia/drug effects , Lung Neoplasms/radiotherapy , Mitochondria/drug effects , NADH Dehydrogenase/antagonists & inhibitors , Oxygen/metabolism , Papaverine/pharmacology , Radiation-Sensitizing Agents/pharmacology , Animals , CRISPR-Cas Systems , Cell Hypoxia/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Electron Transport Complex I , Female , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/radiation effects , NADH Dehydrogenase/genetics , Phosphodiesterase Inhibitors/pharmacology , Radiation Tolerance , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Sens Actuators B Chem ; 3062020 Mar 01.
Article in English | MEDLINE | ID: mdl-32265579

ABSTRACT

Hypoxia (pO2 ≤ ~1.5%) is an important characteristic of tumor microenvironments that directly correlates with resistance against first-line therapies and tumor proliferation/infiltration. The ability to accurately identify hypoxic tumor cells/tissue could afford tailored therapeutic regimens for personalized treatment, development of more-effective therapies, and discerning the mechanisms underlying disease progression. Fluorogenic constructs identifying aforesaid cells/tissue operate by targeting the bioreductive activity of primarily nitroreductases (NTRs), but collectively present photophysical and/or physicochemical shortcomings that could limit effectiveness. To overcome these limitations, we present the rational design, development, and evaluation of the first activatable ultracompact xanthene core-based molecular probe (NO 2 -Rosol) for selectively imaging NTR activity that affords an "OFF-ON" near-infrared (NIR) fluorescence response (> 700 nm) alongside a remarkable Stokes shift (> 150 nm) via NTR activity-facilitated modulation to its energetics whose resultant interplay discontinues an intramolecular d-PET fluorescence-quenching mechanism transpiring between directly-linked electronically-uncoupled π-systems comprising its components. DFT calculations guided selection of a suitable fluorogenic scaffold and nitroaromatic moiety candidate that when adjoined could (i) afford such photophysical response upon bioreduction by upregulated NTR activity in hypoxic tumor cells/tissue and (ii) employ a retention mechanism strategy that capitalizes on an inherent physical property of the NIR fluorogenic scaffold for achieving signal amplification. NO 2 -Rosol demonstrated 705 nm NIR fluorescence emission and 157 nm Stokes shift, selectivity for NTR over relevant bioanalytes, and a 28-/12-fold fluorescence enhancement in solution and between cells cultured under different oxic conditions, respectively. In establishing feasibility for NO 2 -Rosol to provide favorable contrast levels in solutio/vitro, we anticipate NO 2 -Rosol doing so in preclinical studies.

5.
Bioconjug Chem ; 30(5): 1331-1342, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30973715

ABSTRACT

Poly(ADP ribose) polymerase (PARP) enzymes generate poly(ADP ribose) post-translational modifications on target proteins for an array of functions centering on DNA and cell stress. PARP isoforms 1 and 2 are critically charged with the surveillance of DNA integrity and are the first line guardians of the genome against DNA breaks. Here we present a novel probe ([18F]-SuPAR) for noninvasive imaging of PARP-1/2 activity using positron emission tomography (PET). [18F]-SuPAR is a radiofluorinated nicotinamide adenine dinucleotide (NAD) analog that can be recognized by PARP-1/2 and incorporated into the long branched polymers of poly(ADP ribose) (PAR). The measurement of PARP-1/2 activity was supported by a reduction of radiotracer uptake in vivo following PARP-1/2 inhibition with talazoparib treatment, a potent PARP inhibitor recently approved by FDA for treatment of breast cancer, as well as ex vivo colocalization of radiotracer analog and poly(ADP ribose). With [18F]-SuPAR, we were able to map the dose- and time-dependent activation of PARP-1/2 following radiation therapy in breast and cervical cancer xenograft mouse models. Tumor response to therapy was determined by [18F]-SuPAR PET within 8 h of administration of a single dose of radiation equivalent to one round of stereotactic ablative radiotherapy.


Subject(s)
DNA Damage , Fluorine Radioisotopes/administration & dosage , Poly(ADP-ribose) Polymerases/metabolism , Animals , Breast Neoplasms/diagnostic imaging , Female , Humans , NAD/metabolism , Positron-Emission Tomography , Receptors, Urokinase Plasminogen Activator/metabolism , Substrate Specificity , Uterine Cervical Neoplasms/diagnostic imaging , Xenograft Model Antitumor Assays
6.
Stem Cells ; 35(8): 1994-2000, 2017 08.
Article in English | MEDLINE | ID: mdl-28600830

ABSTRACT

Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced PSCs (hiPSCs), have great potential as an unlimited donor source for cell-based therapeutics. The risk of teratoma formation from residual undifferentiated cells, however, remains a critical barrier to the clinical application of these cells. Herein, we describe external beam radiation therapy (EBRT) as an attractive option for the treatment of this iatrogenic growth. We present evidence that EBRT is effective in arresting growth of hESC-derived teratomas in vivo at day 28 post-implantation by using a microCT irradiator capable of targeted treatment in small animals. Within several days of irradiation, teratomas derived from injection of undifferentiated hESCs and hiPSCs demonstrated complete growth arrest lasting several months. In addition, EBRT reduced reseeding potential of teratoma cells during serial transplantation experiments, requiring irradiated teratomas to be seeded at 1 × 103 higher doses to form new teratomas. We demonstrate that irradiation induces teratoma cell apoptosis, senescence, and growth arrest, similar to established radiobiology mechanisms. Taken together, these results provide proof of concept for the use of EBRT in the treatment of existing teratomas and highlight a strategy to increase the safety of stem cell-based therapies. Stem Cells 2017;35:1994-2000.


Subject(s)
Pluripotent Stem Cells/pathology , Radiation, Ionizing , Teratoma/radiotherapy , Apoptosis/radiation effects , Cell Differentiation/radiation effects , Cell Proliferation/radiation effects , Humans , Pluripotent Stem Cells/radiation effects , Teratoma/pathology
7.
Nanotechnology ; 29(50): 504001, 2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30229748

ABSTRACT

Gold nanoparticles (AuNPs) are known to sensitize cancer cells to radiation therapy (RT) by increasing the deposition of ionizing energy in their immediate vicinity. However, this process of dose enhancement is challenging to monitor because it is heterogeneous at the sub-cellular scale. Furthermore, radiation damage is primarily mediated by reactive oxygen species (ROS) that are produced following water radiolysis. Here, radiation-responsive PEGylated gold nanoparticles (RPAuNPs) were synthesized for the enhanced generation and concurrent detection of ROS in cancer cells and tumors. PEGylated gold particles (20 nm diameter) were functionalized with dihydrorhodamine 123 (DHR-123), a known ROS sensor, to monitor ROS generation in their immediate vicinity. These NPs were able to effectively radiosensitize cells, as measured by increased cell apoptosis following RT. Furthermore, the fluorescence of these RPAuNPs was 7-fold higher after 6 Gy RT due to the local production of ROS near the surface of the NP. Finally, multispectral fluorescence imaging was used to monitor NP-induced ROS in vivo, following conformal RT, in a xenograft model of breast cancer. This theranostic NP system provides a novel approach for monitoring the nanoscale enhancement of RT by high-Z metal NPs.


Subject(s)
Breast Neoplasms/radiotherapy , Gold/therapeutic use , Metal Nanoparticles/therapeutic use , Radiation-Sensitizing Agents/therapeutic use , Reactive Oxygen Species/metabolism , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Metal Nanoparticles/ultrastructure , Mice, Inbred BALB C , Mice, Nude
8.
Eur J Nucl Med Mol Imaging ; 44(1): 17-24, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27645692

ABSTRACT

PURPOSE: To determine whether higher pre-treatment metabolic tumor volume (tMTV-pre) is associated with worse overall survival (OS) in patients with inoperable NSCLC treated with definitive chemoradiation (CRT). METHODS: This is a secondary analysis of the American College of Radiology Imaging Network (ACRIN) 6668/Radiation Therapy Oncology Group 0235 trial. Pre-treatment PET scans were performed on ACRIN-qualified scanners. Computer-aided MTV measurement was performed using RT_Image. Kaplan-Meier curves and Cox proportional hazards regression models were used to assess the association between tMTV and OS. RESULTS: Of the 250 patients enrolled on the study, 230 were evaluable for tMTV-pre. Patients with MTV-pre >32 mL (median value) vs. ≤32 mL had worse median OS (14.8 vs. 29.7 months, p < 0.001). As a continuous variable, higher tMTV-pre (per 10-mL increase) remained associated with worse OS (HR = 1.03, p < 0.001) after controlling for other variables. A significant interaction between radiation dose and tMTV-pre occurred for OS (p = 0.002), demonstrating that the negative prognostic impact of tMTV-pre decreased as radiotherapy dose increased. Among patients with tMTV-pre ≤32 mL, there was no difference in survival according to radiotherapy dose delivered (p = 0.694). However, median OS was inferior in patients with tMTV-pre >32 mL who received ≤60 Gy compared with those who received 61-69 Gy or ≥70 Gy (p = 0.001). CONCLUSIONS: Higher tMTV-pre is associated with significantly worse OS in inoperable stage III NSCLC treated with definitive CRT. Our findings suggest that for patients with large tMTV-pre, achieving a therapeutic radiation dose may help maximize OS. Prospective studies are needed to confirm this finding.


Subject(s)
Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/mortality , Lung Neoplasms/therapy , Neoplasm Recurrence, Local/mortality , Positron-Emission Tomography/statistics & numerical data , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/metabolism , Chemoradiotherapy/mortality , Female , Fluorodeoxyglucose F18/pharmacokinetics , Humans , Lung Neoplasms/metabolism , Male , Middle Aged , Neoplasm Recurrence, Local/metabolism , Neoplasm Recurrence, Local/prevention & control , Neoplasm Staging , Positron-Emission Tomography/methods , Prevalence , Radiopharmaceuticals/pharmacokinetics , Reproducibility of Results , Risk Assessment , Sensitivity and Specificity , Survival Rate , Treatment Outcome , Tumor Burden/drug effects , Tumor Burden/radiation effects , United States/epidemiology
9.
Cell Mol Life Sci ; 73(16): 2999-3007, 2016 08.
Article in English | MEDLINE | ID: mdl-27022944

ABSTRACT

It is well known that tumor cells migrate from the primary lesion to distant sites to form metastases and that these lesions limit patient outcome in a majority of cases. However, the extent to which radiation influences this process and to which migration in turn alters radiation response remains controversial. There are preclinical and clinical reports showing that focal radiotherapy can both increase the development of distant metastasis, as well as that it can induce the regression of established metastases through the abscopal effect. More recently, preclinical studies have suggested that radiation can attract migrating tumor cells and may, thereby, facilitate tumor recurrence. In this review, we summarize these phenomena and their potential mechanisms of action, and evaluate their significance for modern radiation therapy strategies.


Subject(s)
Cell Movement/radiation effects , Neoplasm Metastasis/radiotherapy , Neoplasms/blood supply , Neoplasms/radiotherapy , Animals , Cytokines/analysis , Epithelial-Mesenchymal Transition/radiation effects , Humans , Neoplasm Metastasis/pathology , Neoplasms/pathology , Radiotherapy/adverse effects , Radiotherapy/methods
10.
Eur J Nucl Med Mol Imaging ; 43(4): 617-25, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26577940

ABSTRACT

PURPOSE: While methods for imaging tumor hypoxia with positron emission tomography (PET) have been developed, optimal methods for interpreting and utilizing these datasets in the clinic remain unclear. In this study, we analyzed hypoxia PET images of head and neck cancer patients and compared imaging metrics with human papilloma virus (HPV) status and clinical outcome. METHODS: Forty-one patients treated as part of a phase III trial of the hypoxic cytotoxin tirapazamine (TROG 02.02) were imaged with PET using fluorodeoxyglucose (FDG) and fluoroazomycin arabinoside (FAZA). FDG and FAZA PET images were interpreted qualitatively and quantitatively, and compared with tumor T stage, HPV status, and treatment outcome using multivariate statistics. RESULTS: PET signals in the tumor and lymph nodes exhibited significant intra- and inter-patient variability. The FAZA hypoxic volume demonstrated a significant correlation with tumor T stage. PET-hypoxic tumors treated with cisplatin exhibited significantly worse treatment outcomes relative to PET-oxic tumors or PET-hypoxic tumors treated with tirapazamine. CONCLUSION: Quantitative analysis of FAZA PET yielded metrics that correlated with clinical T stage and were capable of stratifying patient outcome. These results encourage further development of this technology, with particular emphasis on establishment of robust quantitative methods.


Subject(s)
Fluorodeoxyglucose F18 , Head and Neck Neoplasms/diagnostic imaging , Nitroimidazoles , Papillomavirus Infections/diagnostic imaging , Positron-Emission Tomography , Radiopharmaceuticals , Adult , Aged , Data Interpretation, Statistical , Female , Head and Neck Neoplasms/complications , Head and Neck Neoplasms/radiotherapy , Humans , Male , Middle Aged , Papillomavirus Infections/complications , Papillomavirus Infections/drug therapy
11.
Int J Radiat Oncol Biol Phys ; 119(3): 1001-1010, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38171387

ABSTRACT

PURPOSE: Ultrahigh-dose-rate (FLASH) irradiation has been reported to reduce normal tissue damage compared with conventional dose rate (CONV) irradiation without compromising tumor control. This proof-of-concept study aims to develop a deep learning (DL) approach to quantify the FLASH isoeffective dose (dose of CONV that would be required to produce the same effect as the given physical FLASH dose) with postirradiation mouse intestinal histology images. METHODS AND MATERIALS: Eighty-four healthy C57BL/6J female mice underwent 16 MeV electron CONV (0.12 Gy/s; n = 41) or FLASH (200 Gy/s; n = 43) single fraction whole abdominal irradiation. Physical dose ranged from 12 to 16 Gy for FLASH and 11 to 15 Gy for CONV in 1 Gy increments. Four days after irradiation, 9 jejunum cross-sections from each mouse were hematoxylin and eosin stained and digitized for histological analysis. CONV data set was randomly split into training (n = 33) and testing (n = 8) data sets. ResNet101-based DL models were retrained using the CONV training data set to estimate the dose based on histological features. The classical manual crypt counting (CC) approach was implemented for model comparison. Cross-section-wise mean squared error was computed to evaluate the dose estimation accuracy of both approaches. The validated DL model was applied to the FLASH data set to map the physical FLASH dose into the isoeffective dose. RESULTS: The DL model achieved a cross-section-wise mean squared error of 0.20 Gy2 on the CONV testing data set compared with 0.40 Gy2 of the CC approach. Isoeffective doses estimated by the DL model for FLASH doses of 12, 13, 14, 15, and 16 Gy were 12.19 ± 0.46, 12.54 ± 0.37, 12.69 ± 0.26, 12.84 ± 0.26, and 13.03 ± 0.28 Gy, respectively. CONCLUSIONS: Our proposed DL model achieved accurate CONV dose estimation. The DL model results indicate that in the physical dose range of 13 to 16 Gy, the biologic dose response of small intestinal tissue to FLASH irradiation is represented by a lower isoeffective dose compared with the physical dose. Our DL approach can be a tool for studying isoeffective doses of other radiation dose modifying interventions.


Subject(s)
Deep Learning , Mice, Inbred C57BL , Animals , Mice , Female , Intestines/radiation effects , Intestines/pathology , Radiotherapy Dosage , Jejunum/radiation effects , Jejunum/pathology , Proof of Concept Study
12.
Article in English | MEDLINE | ID: mdl-38493902

ABSTRACT

PURPOSE: We conducted a multi-institutional dosimetric audit between FLASH and conventional dose rate (CONV) electron irradiations by using an anatomically realistic 3-dimensional (3D) printed mouse phantom. METHODS AND MATERIALS: A computed tomography (CT) scan of a live mouse was used to create a 3D model of bony anatomy, lungs, and soft tissue. A dual-nozzle 3D printer was used to print the mouse phantom using acrylonitrile butadiene styrene (∼1.02 g/cm3) and polylactic acid (∼1.24 g/cm3) simultaneously to simulate soft tissue and bone densities, respectively. The lungs were printed separately using lightweight polylactic acid (∼0.64 g/cm3). Hounsfield units (HU), densities, and print-to-print stability of the phantoms were assessed. Three institutions were each provided a phantom and each institution performed 2 replicates of irradiations at selected anatomic regions. The average dose difference between FLASH and CONV dose distributions and deviation from the prescribed dose were measured with radiochromic film. RESULTS: Compared with the reference CT scan, CT scans of the phantom demonstrated mass density differences of 0.10 g/cm3 for bone, 0.12 g/cm3 for lung, and 0.03 g/cm3 for soft tissue regions. Differences in HU between phantoms were <10 HU for soft tissue and bone, with lung showing the most variation (54 HU), but with minimal effect on dose distribution (<0.5%). Mean differences between FLASH and CONV decreased from the first to the second replicate (4.3%-1.2%), and differences from the prescribed dose decreased for both CONV (3.6%-2.5%) and FLASH (6.4%-2.7%). Total dose accuracy suggests consistent pulse dose and pulse number, although these were not specifically assessed. Positioning variability was observed, likely due to the absence of robust positioning aids or image guidance. CONCLUSIONS: This study marks the first dosimetric audit for FLASH using a nonhomogeneous phantom, challenging conventional calibration practices reliant on homogeneous phantoms. The comparison protocol offers a framework for credentialing multi-institutional studies in FLASH preclinical research to enhance reproducibility of biologic findings.

13.
Med Phys ; 50(2): 1251-1256, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36564922

ABSTRACT

BACKGROUND: While radiation therapy (RT) is a critical component of breast cancer therapy and is known to decrease overall local recurrence rates, recent studies have shown that normal tissue radiation damage may increase recurrence risk. Fibrosis is a well-known consequence of RT, but the specific sequence of molecular and mechanical changes induced by RT remains poorly understood. PURPOSE: To improve cancer therapy outcomes, there is a need to understand the role of the irradiated tissue microenvironment in tumor recurrence. This study seeks to evaluate the use of spectral quantitative ultrasound (spectral QUS) for real time determination of the normal tissue characteristic radiation response and to correlate these results to molecular features in irradiated tissues. METHODS: Murine mammary fat pads (MFPs) were irradiated to 20 Gy, and spectral QUS was used to analyze tissue physical properties pre-irradiation as well as at 1, 5, and 10 days post-irradiation. Tissues were processed for scanning electron microscopy imaging as well as histological and immunohistochemical staining to evaluate morphology and structure. RESULTS: Tissue morphological and structural changes were observed non-invasively following radiation using mid-band fit (MBF), spectral slope (SS), and spectral intercept (SI) measurements obtained from spectral QUS. Statistically significant shifts in MBF and SI indicate structural tissue changes in real time, which matched histological observations. Radiation damage was indicated by increased adipose tissue density and extracellular matrix (ECM) deposition. CONCLUSIONS: Our findings demonstrate the potential of using spectral QUS to noninvasively evaluate normal tissue changes resulting from radiation damage. This supports further pre-clinical studies to determine how the tissue microenvironment and physical properties change in response to therapy, which may be important for improving treatment strategies.


Subject(s)
Breast Neoplasms , Neoplasm Recurrence, Local , Humans , Animals , Mice , Female , Ultrasonography/methods , Breast Neoplasms/radiotherapy , Fibrosis , Spectrum Analysis/methods , Tumor Microenvironment
14.
Sci Immunol ; 8(84): eadd7446, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37294749

ABSTRACT

The recruitment of monocytes and their differentiation into immunosuppressive cells is associated with the low efficacy of preclinical nonconformal radiotherapy (RT) for tumors. However, nonconformal RT (non-CRT) does not mimic clinical practice, and little is known about the role of monocytes after RT modes used in patients, such as conformal RT (CRT). Here, we investigated the acute immune response induced by after CRT. Contrary to non-CRT approaches, we found that CRT induces a rapid and robust recruitment of monocytes to the tumor that minimally differentiate into tumor-associated macrophages or dendritic cells but instead up-regulate major histocompatibility complex II and costimulatory molecules. We found that these large numbers of infiltrating monocytes are responsible for activating effector polyfunctional CD8+ tumor-infiltrating lymphocytes that reduce tumor burden. Mechanistically, we show that monocyte-derived type I interferon is pivotal in promoting monocyte accumulation and immunostimulatory function in a positive feedback loop. We also demonstrate that monocyte accumulation in the tumor microenvironment is hindered when RT inadvertently affects healthy tissues, as occurs in non-CRT. Our results unravel the immunostimulatory function of monocytes during clinically relevant modes of RT and demonstrate that limiting the exposure of healthy tissues to radiation has a positive therapeutic effect on the overall antitumor immune response.


Subject(s)
Interferon Type I , Neoplasms , Humans , Monocytes , Neoplasms/radiotherapy , Cell Differentiation , Interferon Type I/pharmacology , Lymphocytes, Tumor-Infiltrating , Tumor Microenvironment
15.
Int J Radiat Oncol Biol Phys ; 117(2): 482-492, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37105403

ABSTRACT

PURPOSE: Ultrahigh-dose-rate (UHDR) radiation therapy (RT) has produced the FLASH effect in preclinical models: reduced toxicity with comparable tumor control compared with conventional-dose-rate RT. Early clinical trials focused on UHDR RT feasibility using specialized devices. We explore the technical feasibility of practical electron UHDR RT on a standard clinical linear accelerator (LINAC). METHODS AND MATERIALS: We tuned the program board of a decommissioned electron energy for UHDR electron delivery on a clinical LINAC without hardware modification. Pulse delivery was controlled using the respiratory gating interface. A short source-to-surface distance (SSD) electron setup with a standard scattering foil was configured and tested on an anthropomorphic phantom using circular blocks with 3- to 20-cm field sizes. Dosimetry was evaluated using radiochromic film and an ion chamber profiler. RESULTS: UHDR open-field mean dose rates at 100, 80, 70, and 59 cm SSD were 36.82, 59.52, 82.01, and 112.83 Gy/s, respectively. At 80 cm SSD, mean dose rate was ∼60 Gy/s for all collimated field sizes, with an R80 depth of 6.1 cm corresponding to an energy of 17.5 MeV. Heterogeneity was <5.0% with asymmetry of 2.2% to 6.2%. The short SSD setup was feasible under realistic treatment conditions simulating broad clinical indications on an anthropomorphic phantom. CONCLUSIONS: Short SSD and tuning for high electron beam current on a standard clinical LINAC can deliver flat, homogenous UHDR electrons over a broad, clinically relevant range of field sizes and depths with practical working distances in a configuration easily reversible to standard clinical use.


Subject(s)
Electrons , Neoplasms , Humans , Radiometry/methods , Particle Accelerators , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage
16.
ArXiv ; 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37808098

ABSTRACT

We conducted a multi-institutional audit of dosimetric variability between FLASH and conventional dose rate (CONV) electron irradiations by using an anatomically realistic 3D-printed mouse phantom. A CT scan of a live mouse was used to create a 3D model of bony anatomy, lungs, and soft tissue. A dual-nozzle 3D printer was used to print the mouse phantom using acrylonitrile butadiene styrene ($~1.02 g/cm^3$) and polylactic acid ($~1.24 g/cm^3$) simultaneously to simulate soft tissue and bone densities, respectively. The lungs were printed separately using lightweight polylactic acid ($~0.64 g/cm^3$). Hounsfield units (HU) and densities were compared with the reference CT scan of the live mouse. Print-to-print reproducibility of the phantom was assessed. Three institutions were each provided a phantom, and each institution performed two replicates of irradiations at selected mouse anatomic regions. The average dose difference between FLASH and CONV dose distributions and deviation from the prescribed dose were measured with radiochromic film. Compared to the reference CT scan, CT scans of the phantom demonstrated mass density differences of $0.10 g/cm^3$ for bone, $0.12 g/cm^3$ for lung, and $0.03 g/cm^3$ for soft tissue regions. Between phantoms, the difference in HU for soft tissue and bone was <10 HU from print to print. Lung exhibited the most variation (54 HU) but minimally affected dose distribution (<0.5% dose differences between phantoms). The mean difference between FLASH and CONV from the first replicate to the second decreased from 4.3% to 1.2%, and the mean difference from the prescribed dose decreased from 3.6% to 2.5% for CONV and 6.4% to 2.7% for FLASH. The framework presented here is promising for credentialing of multi-institutional studies of FLASH preclinical research to maximize the reproducibility of biological findings.

17.
J Clin Invest ; 133(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37824211

ABSTRACT

An immunosuppressive microenvironment causes poor tumor T cell infiltration and is associated with reduced patient overall survival in colorectal cancer. How to improve treatment responses in these tumors is still a challenge. Using an integrated screening approach to identify cancer-specific vulnerabilities, we identified complement receptor C5aR1 as a druggable target, which when inhibited improved radiotherapy, even in tumors displaying immunosuppressive features and poor CD8+ T cell infiltration. While C5aR1 is well-known for its role in the immune compartment, we found that C5aR1 is also robustly expressed on malignant epithelial cells, highlighting potential tumor cell-specific functions. C5aR1 targeting resulted in increased NF-κB-dependent apoptosis specifically in tumors and not normal tissues, indicating that, in malignant cells, C5aR1 primarily regulated cell fate. Collectively, these data revealed that increased complement gene expression is part of the stress response mounted by irradiated tumors and that targeting C5aR1 could improve radiotherapy, even in tumors displaying immunosuppressive features.


Subject(s)
Complement C5a , Receptors, Complement , Humans , Complement C5a/genetics , Receptors, Complement/genetics
18.
Cancer Immunol Res ; 10(2): 245-258, 2022 02.
Article in English | MEDLINE | ID: mdl-34819308

ABSTRACT

Many solid tumors have low levels of cytotoxic CD56dim natural killer (NK) cells, suggesting that CD56dim NK-cell exclusion from the tumor microenvironment (TME) contributes to the decreased response rate of immunotherapy. Complement component 3a (C3a) is known for its tumor-promoting and immunosuppressive roles in solid tumors. Previous reports have implicated the involvement of the C3a receptor (C3aR) in immune cell trafficking into the TME. C3aR is predominantly expressed on the surface of activated cytotoxic NK cells, but a specific role for C3aR in NK-cell biology has not been investigated. Because solid tumors generate elevated C3a and have decreased NK-cell infiltration, we hypothesized that C3aR might play a role in cytotoxic NK-cell recruitment into the TME. Our results indicate that blocking C3aR signaling in NK cells increased NK-cell infiltration into the TME in mouse models and led to tumor regression. Because the critical lymphocyte trafficking integrin LFA-1 orchestrates the migration of activated NK cells, we wanted to gain insight into the interaction between C3aR signaling and LFA-1. Our results demonstrated that direct interaction between C3aR and LFA-1, which led to a high-affinity LFA-1 conformation, decreased NK-cell infiltration into the TME. We propose that approaches to enhance cytotoxic NK-cell infiltration into the TME, through either disrupting C3a and C3aR interaction or inhibiting the formation of high-affinity LFA-1, represent a new strategy to improve the efficiency of immunotherapy for cancer treatment.


Subject(s)
Killer Cells, Natural , Neoplasms , Receptors, Complement , Tumor Microenvironment , Animals , Disease Models, Animal , Lymphocyte Function-Associated Antigen-1/metabolism , Mice , Neoplasms/metabolism , Neoplasms/therapy , Receptors, Complement/metabolism , Signal Transduction
19.
Sci Rep ; 12(1): 3500, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241721

ABSTRACT

The efficacy of molecular targeted therapy depends on expression and enzymatic activity of the target molecules. As radiotherapy modulates gene expression and protein phosphorylation dependent on dose and fractionation, we analyzed the long-term effects of irradiation on the post-radiation efficacy of molecular targeted drugs. We irradiated prostate cancer cells either with a single dose (SD) of 10 Gy x-ray or a multifractionated (MF) regimen with 10 fractions of 1 Gy. Whole genome arrays and reverse phase protein microarrays were used to determine gene expression and protein phosphorylation. Additionally, we evaluated radiation-induced pathway activation with the Ingenuity Pathway Analysis software. To measure cell survival and sensitivity to clinically used molecular targeted drugs, we performed colony formation assays. We found increased activation of several pathways regulating important cell functions such as cell migration and cell survival at 24 h after MF irradiation or at 2 months after SD irradiation. Further, cells which survived a SD of 10 Gy showed a long-term upregulation and increased activity of multiple molecular targets including AKT, IGF-1R, VEGFR2, or MET, while HDAC expression was decreased. In line with this, 10 Gy SD cells were more sensitive to target inhibition with Capivasertib or Ipatasertib (AKTi), BMS-754807 (IGF-1Ri), or Foretinib (VEGFR2/METi), but less sensitive to Panobinostat or Vorinostat (HDACi). In summary, understanding the molecular short- and long-term changes after irradiation can aid in optimizing the efficacy of multimodal radiation oncology in combination with post-irradiation molecularly-targeted drug treatment and improving the outcome of prostate cancer patients.


Subject(s)
Prostatic Neoplasms , Radiation Oncology , Cell Survival , Dose Fractionation, Radiation , Humans , Male , Prostate/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/radiotherapy
20.
Nat Cancer ; 3(11): 1351-1366, 2022 11.
Article in English | MEDLINE | ID: mdl-36411318

ABSTRACT

Radiation therapy is a mainstay of cancer treatment but does not always lead to complete tumor regression. Here we combine radiotherapy with blockade of the 'don't-eat-me' cell-surface molecule CD47 in small cell lung cancer (SCLC), a highly metastatic form of lung cancer. CD47 blockade potently enhances the local antitumor effects of radiotherapy in preclinical models of SCLC. Notably, CD47 blockade also stimulates off-target 'abscopal' effects inhibiting non-irradiated SCLC tumors in mice receiving radiation. These abscopal effects are independent of T cells but require macrophages that migrate into non-irradiated tumor sites in response to inflammatory signals produced by radiation and are locally activated by CD47 blockade to phagocytose cancer cells. Similar abscopal antitumor effects were observed in other cancer models treated with radiation and CD47 blockade. The systemic activation of antitumor macrophages following radiotherapy and CD47 blockade may be particularly important in patients with cancer who suffer from metastatic disease.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Mice , Animals , CD47 Antigen , Macrophages , Phagocytosis , Small Cell Lung Carcinoma/drug therapy , Lung Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL