Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Nucleic Acids Res ; 50(17): 9689-9704, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36107773

ABSTRACT

SERPINA1 mRNAs encode the protease inhibitor α-1-antitrypsin and are regulated through post-transcriptional mechanisms. α-1-antitrypsin deficiency leads to chronic obstructive pulmonary disease (COPD) and liver cirrhosis, and specific variants in the 5'-untranslated region (5'-UTR) are associated with COPD. The NM_000295.4 transcript is well expressed and translated in lung and blood and features an extended 5'-UTR that does not contain a competing upstream open reading frame (uORF). We show that the 5'-UTR of NM_000295.4 folds into a well-defined multi-helix structural domain. We systematically destabilized mRNA structure across the NM_000295.4 5'-UTR, and measured changes in (SHAPE quantified) RNA structure and cap-dependent translation relative to a native-sequence reporter. Surprisingly, despite destabilizing local RNA structure, most mutations either had no effect on or decreased translation. Most structure-destabilizing mutations retained native, global 5'-UTR structure. However, those mutations that disrupted the helix that anchors the 5'-UTR domain yielded three groups of non-native structures. Two of these non-native structure groups refolded to create a stable helix near the translation initiation site that decreases translation. Thus, in contrast to the conventional model that RNA structure in 5'-UTRs primarily inhibits translation, complex folding of the NM_000295.4 5'-UTR creates a translation-optimized message by promoting accessibility at the translation initiation site.


Subject(s)
Protein Biosynthesis , Pulmonary Disease, Chronic Obstructive , alpha 1-Antitrypsin/genetics , 5' Untranslated Regions , Humans , Protease Inhibitors , Pulmonary Disease, Chronic Obstructive/genetics , RNA, Messenger/metabolism
2.
Am J Respir Crit Care Med ; 201(5): 540-554, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31661293

ABSTRACT

Rationale: The role of PI (protease inhibitor) type Z heterozygotes and additional rare variant genotypes in the gene encoding alpha-1 antitrypsin, SERPINA1 (serpin peptidase inhibitor, clade A, member 1), in determining chronic obstructive pulmonary disease risk and severity is controversial.Objectives: To comprehensively evaluate the effects of rare SERPINA1 variants on lung function and emphysema phenotypes in subjects with significant tobacco smoke exposure using deep gene resequencing and alpha-1 antitrypsin concentrations.Methods: DNA samples from 1,693 non-Hispanic white individuals, 385 African Americans, and 90 Hispanics with ≥20 pack-years smoking were resequenced for the identification of rare variants (allele frequency < 0.05) in 16.9 kB of SERPINA1.Measurements and Main Results: White PI Z heterozygotes confirmed by sequencing (MZ; n = 74) had lower post-bronchodilator FEV1 (P = 0.007), FEV1/FVC (P = 0.003), and greater computed tomography-based emphysema (P = 0.02) compared with 1,411 white individuals without PI Z, S, or additional rare variants denoted as VR. PI Z-containing compound heterozygotes (ZS/ZVR; n = 7) had lower FEV1/FVC (P = 0.02) and forced expiratory flow, midexpiratory phase (P = 0.009). Nineteen white heterozygotes for five non-S/Z coding variants associated with lower alpha-1 antitrypsin had greater computed tomography-based emphysema compared with those without rare variants. In African Americans, a 5' untranslated region insertion (rs568223361) was associated with lower alpha-1 antitrypsin and functional small airway disease (P = 0.007).Conclusions: In this integrative deep sequencing study of SERPINA1 with alpha-1 antitrypsin concentrations in a heavy smoker and chronic obstructive pulmonary disease cohort, we confirmed the effects of PI Z heterozygote and compound heterozygote genotypes. We demonstrate the cumulative effects of multiple SERPINA1 variants on alpha-1 antitrypsin deficiency, lung function, and emphysema, thus significantly increasing the frequency of SERPINA1 variation associated with respiratory disease in at-risk smokers.


Subject(s)
Lung/physiopathology , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Emphysema/genetics , Smoking/epidemiology , alpha 1-Antitrypsin/genetics , Adult , Black or African American , Aged , Aged, 80 and over , Female , Forced Expiratory Volume , Genotype , Heterozygote , Hispanic or Latino , Humans , Isoelectric Focusing , Male , Maximal Midexpiratory Flow Rate , Middle Aged , Phenotype , Polymorphism, Genetic , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Emphysema/epidemiology , Pulmonary Emphysema/metabolism , Pulmonary Emphysema/physiopathology , Tomography, X-Ray Computed , Vital Capacity , White People , alpha 1-Antitrypsin/metabolism
3.
Biosens Bioelectron ; 91: 175-182, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28006686

ABSTRACT

Microraft arrays have been used to screen and then isolate adherent and non-adherent cells with very high efficiency and excellent viability; however, manual screening and isolation limits the throughput and utility of the technology. In this work, novel hardware and software were developed to automate the microraft array platform. The developed analysis software identified microrafts on the array with greater than 99% sensitivity and cells on the microrafts with 100% sensitivity. The software enabled time-lapse imaging and the use of temporally varying characteristics as sort criteria. The automated hardware released microrafts with 98% efficiency and collected released microrafts with 100% efficiency. The automated system was used to examine the temporal variation in EGFP expression in cells transfected with CRISPR-Cas9 components for gene editing. Of 11,499 microrafts possessing a single cell, 220 microrafts were identified as possessing temporally varying EGFP-expression. Candidate cells (n=172) were released and collected from the microraft array and screened for the targeted gene mutation. Two cell colonies were successfully gene edited demonstrating the desired mutation.


Subject(s)
Biosensing Techniques/instrumentation , CRISPR-Cas Systems , Mutation , Splicing Factor U2AF/genetics , Tissue Array Analysis/instrumentation , Biosensing Techniques/methods , Equipment Design , Genes, Reporter , Green Fluorescent Proteins/genetics , Humans , Image Processing, Computer-Assisted , K562 Cells , Leukemia/genetics , Tissue Array Analysis/methods , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL