Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Robot Surg ; 14(3): 431-437, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31396848

ABSTRACT

Computer-aided navigation and robotic guidance systems have become widespread in their utilization for spine surgery. A recent innovation combines these two advances, which theoretically provides accuracy in spinal screw placement. This study describes the cortical and pedicle screw accuracy for the first 54 cases where navigated robotic assistance was used in a surgical setting. This is a retrospective chart review of the initial 54 patients undergoing spine surgery with pedicle and cortical screws using robotic guidance with navigation. A computed tomography (CT)-based Gertzbein and Robbins System (GRS) was used to classify pedicle screw accuracy. Screw tip, tail, and angulation offsets were measured using image overlay analysis. Screw malposition, reposition, and return to operating room rates were collected. 1 of the first 54 cases was a revision surgery and was excluded from the study. Ten screws were placed without the robot due to surgeon discretion and were excluded for the data analysis of 292 screws. Only 0.68% (2/292) of the robot-assisted screws was repositioned based on surgeon discretion. Based on the GRS CT-based grading, 98.3% (287/292) were graded A or B, 1.0% (3/292) screws were graded C, and only 0.7% (2/292) screws was graded D. The average offset from preoperative plan to actual final placement was 1.9 mm from the tip, 2.3 mm from the tail, and 2.8° of angulation. In the first 53 cases, 292 screws placed with navigated robotic assistance resulted in a high level of accuracy (98.3%), adequate screw offsets from planned trajectory, and zero complications.


Subject(s)
Orthopedic Procedures/methods , Pedicle Screws , Robotic Surgical Procedures/methods , Spine/surgery , Surgery, Computer-Assisted/methods , Adult , Aged , Female , Humans , Male , Middle Aged , Postoperative Complications/prevention & control , Retrospective Studies , Tomography, X-Ray Computed , Treatment Outcome , Young Adult
2.
Global Spine J ; 10(8): 998-1005, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32875829

ABSTRACT

STUDY DESIGN: Retrospective cohort study. OBJECTIVE: The purpose of this study is to compare the radiographic and clinical outcomes of expandable interbody spacers to static interbody spacers. METHODS: This is a retrospective, institutional review board-exempt chart review of 62 consecutive patients diagnosed with degenerative disc disease who underwent minimally invasive spine surgery lateral lumbar interbody fusion (MIS LLIF) using static or expandable spacers. There were 27 patients treated with static spacers, and 35 with expandable spacers. Radiographic and clinical functional outcomes were collected. Statistical results were significant if P < .05. RESULTS: Mean improvement in visual analogue scale back and leg pain scores was significantly greater in the expandable group compared to the static group at 6 and 24 months by 42.3% and 63.8%, respectively (P < .05). Average improvement in Oswestry Disability Index scores was significantly greater in the expandable group than the static group at 3, 6, 12, and 24 months by 28%, 44%, 59%, 53%, and 89%, respectively (P < .05). For disc height, the mean improvement from baseline to 24 months was greater in the static group compared to the expandable group (P < .05). Implant subsidence was significantly greater in the static group (16.1%, 5/31 levels) compared with the expandable group (6.7%, 3/45 levels; P < .05). CONCLUSIONS: This study showed positive clinical and radiographic outcomes for patients who underwent MIS LLIF with expandable spacers compared to those with static spacers. Sagittal correction and pain relief was achieved and maintained through 24-month follow-up. The expandable group had a lower subsidence rate than the static group.

3.
J Robot Surg ; 14(4): 567-572, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31542860

ABSTRACT

Robotic assistance with integrated navigation is an area of high interest for improving the accuracy of minimally invasive pedicle screw placement. This study analyzes the accuracy of pedicle screw placement between an attending spine surgeon and a resident by comparing the left and right sides of the first 101 consecutive cases using navigated robotic assistance in a private practice clinical setting. A retrospective, Institutional Review Board-exempt review of the first 106 navigated robot-assisted spine surgery cases was performed. One attending spine surgeon and one resident performed pedicle screw placement consistently on either the left or right side (researchers were blinded). A CT-based Gertzbein and Robbins system (GRS) was used to classify pedicle screw accuracy, with grade A or B considered accurate. There were 630 consecutive lumbosacral pedicle screws placed. Thirty screws (5 patients) were placed without the robot due to surgeon discretion. Of the 600 pedicle screws inserted by navigated robotic guidance (101 patients), only 1.5% (9/600) were repositioned intraoperatively. Based on the GRS CT-based grading of pedicle breach, 98.67% (296/300) of left-side screws were graded A or B, 1.3% (4/300) were graded C, and 0% (0/300) were graded D. For the right-side screws, 97.67% (293/300) were graded A or B, 1.67% (5/300) were graded C, and 0.66% (2/300) were graded D. This study demonstrated a high level of accuracy (based on GRS) with no significant differences between the left- and right-side pedicle screw placements (98.67% vs. 97.67%, respectively) in the clinical use of navigated, robot-assisted surgery.


Subject(s)
Minimally Invasive Surgical Procedures/methods , Pedicle Screws , Robotic Surgical Procedures/methods , Spine/surgery , Surgery, Computer-Assisted/methods , Adult , Aged , Aged, 80 and over , Female , Humans , Lumbosacral Region , Male , Middle Aged , Retrospective Studies , Sensitivity and Specificity
4.
Int J Med Robot ; 16(1): e2054, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31677227

ABSTRACT

BACKGROUND: In the emerging field of robot-assisted spine surgery, radiographic evaluation of pedicle screw accuracy in the surgical setting is of high interest. Advances in medical imaging have improved the accuracy of pedicle screw placement, from fluoroscopy-guided to computer-aided navigation. METHODS: A retrospective, institutional review board-exempt review of the first 106 navigated robot-assisted spine surgery cases was performed. Radiographic evaluation of preoperative and postoperative computerized tomography (CT) scans were collected. RESULTS: In the first 106 cases, 630 lumbosacral pedicle screws were placed. Thirty screws were placed in five patients without the robot because of surgeon discretion. Of the 600 pedicle screws inserted by navigated robotic guidance, only 1.5% (9/600) were repositioned intraoperatively. CONCLUSION: This study demonstrated a high level of accuracy (98.2%) in terms of grade A or B pedicle screw breach scores in the clinical use of navigated, robot-assisted surgery in its first 101 cases.


Subject(s)
Lumbosacral Region/surgery , Minimally Invasive Surgical Procedures/methods , Pedicle Screws , Robotic Surgical Procedures/methods , Aged , Female , Humans , Male , Middle Aged , Minimally Invasive Surgical Procedures/adverse effects , Postoperative Complications/etiology , Robotic Surgical Procedures/adverse effects
5.
Spine J ; 20(4): 657-664, 2020 04.
Article in English | MEDLINE | ID: mdl-31634616

ABSTRACT

BACKGROUND CONTEXT: The use of zero-profile devices and the need for posterior fixation in conjunction with a cervical hybrid decompression model have yet to be investigated. PURPOSE: To compare the biomechanics of zero-profile and fixed profile cervical hybrid constructs composed of anterior cervical discectomy and fusion (ACDF) and anterior cervical corpectomy and fusion (ACCF). Fixed profile devices included anterior plating, whereas zero-profile devices included integrated screws. STUDY DESIGN: In vitro cadaveric biomechanical study. METHODS: Twelve fresh-frozen cadaveric spines (C2-C7) were divided into two groups of equal bone mineral density, fixed profile versus zero profile (n=6). Groups were instrumented from C3-C6 with either (1) an expandable ACCF device and a static ACDF spacer with an anterior plate (Hybrid-AP) or (2) a zero-profile ACCF spacer with adjacent zero-profile ACDF spacer (Hybrid-Z). Motion was captured for the (1) intact condition, (2) a hybrid model with lateral mass screws (LMS), (3) a hybrid model without LMS, and (4) a hybrid model without LMS following simulated repetitive loading (fatigue). RESULTS: Hybrid-AP with LMS reduced motion in flexion-extension (FE), lateral bending (LB), and axial rotation (AR) by 77%, 88%, and 82%, respectively, compared with intact. Likewise, Hybrid-Z with LMS exhibited the greatest reduction in motion relative to intact in FE, LB, and AR by 90%, 95%, and 66%, respectively. Following simulated in vivo fatiguing, an increase in motion was observed for both groups in all planes, particularly during Hybrid-Z postfatigue condition where motion increased relative to intact by 29%. Overall, biomechanical equivalency was observed between Hybrid-AP and Hybrid-Z groups (p>.05). Three (50%) of the Hybrid-Z group specimens exhibited signs of implant migration from the inferior endplate during testing. CONCLUSIONS: Fixed profile systems using an anterior plate for supplemental fixation is biomechanically more favorable to maintain stability and prevent dislodgement. Dislodgement of 50% of the Hybrid-Z group without LMS emphasizes the necessity for posterior fixation in a zero-profile cervical hybrid decompression model.


Subject(s)
Cervical Vertebrae , Spinal Fusion , Biomechanical Phenomena , Bone Plates , Cadaver , Cervical Vertebrae/surgery , Decompression , Diskectomy , Humans , Range of Motion, Articular
SELECTION OF CITATIONS
SEARCH DETAIL