Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Publication year range
1.
Nature ; 626(8001): 975-978, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38418911

ABSTRACT

The identification of sources driving cosmic reionization, a major phase transition from neutral hydrogen to ionized plasma around 600-800 Myr after the Big Bang1-3, has been a matter of debate4. Some models suggest that high ionizing emissivity and escape fractions (fesc) from quasars support their role in driving cosmic reionization5,6. Others propose that the high fesc values from bright galaxies generate sufficient ionizing radiation to drive this process7. Finally, a few studies suggest that the number density of faint galaxies, when combined with a stellar-mass-dependent model of ionizing efficiency and fesc, can effectively dominate cosmic reionization8,9. However, so far, comprehensive spectroscopic studies of low-mass galaxies have not been done because of their extreme faintness. Here we report an analysis of eight ultra-faint galaxies (in a very small field) during the epoch of reionization with absolute magnitudes between MUV ≈ -17 mag and -15 mag (down to 0.005L⋆ (refs. 10,11)). We find that faint galaxies during the first thousand million years of the Universe produce ionizing photons with log[ξion (Hz erg-1)] = 25.80 ± 0.14, a factor of 4 higher than commonly assumed values12. If this field is representative of the large-scale distribution of faint galaxies, the rate of ionizing photons exceeds that needed for reionization, even for escape fractions of the order of 5%.

2.
Nature ; 628(8006): 57-61, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354833

ABSTRACT

Early JWST observations have uncovered a population of red sources that might represent a previously overlooked phase of supermassive black hole growth1-3. One of the most intriguing examples is an extremely red, point-like object that was found to be triply imaged by the strong lensing cluster Abell 2744 (ref. 4). Here we present deep JWST/NIRSpec observations of this object, Abell2744-QSO1. The spectroscopy confirms that the three images are of the same object, and that it is a highly reddened (AV ≃ 3) broad emission line active galactic nucleus at a redshift of zspec = 7.0451 ± 0.0005. From the width of Hß (full width at half-maximum = 2,800 ± 250 km s-1), we derive a black hole mass of M BH = 4 - 1 + 2 × 1 0 7 M ⊙ . We infer a very high ratio of black-hole-to-galaxy mass of at least 3%, an order of magnitude more than that seen in local galaxies5 and possibly as high as 100%. The lack of strong metal lines in the spectrum together with the high bolometric luminosity (Lbol = (1.1 ± 0.3) × 1045 erg s-1) indicate that we are seeing the black hole in a phase of rapid growth, accreting at 30% of the Eddington limit. The rapid growth and high black-hole-to-galaxy mass ratio of Abell2744-QSO1 suggest that it may represent the missing link between black hole seeds6 and one of the first luminous quasars7.

3.
Nature ; 532(7599): 340-2, 2016 Apr 21.
Article in English | MEDLINE | ID: mdl-27049949

ABSTRACT

Quasars are associated with and powered by the accretion of material onto massive black holes; the detection of highly luminous quasars with redshifts greater than z = 6 suggests that black holes of up to ten billion solar masses already existed 13 billion years ago. Two possible present-day 'dormant' descendants of this population of 'active' black holes have been found in the galaxies NGC 3842 and NGC 4889 at the centres of the Leo and Coma galaxy clusters, which together form the central region of the Great Wall--the largest local structure of galaxies. The most luminous quasars, however, are not confined to such high-density regions of the early Universe; yet dormant black holes of this high mass have not yet been found outside of modern-day rich clusters. Here we report observations of the stellar velocity distribution in the galaxy NGC 1600--a relatively isolated elliptical galaxy near the centre of a galaxy group at a distance of 64 megaparsecs from Earth. We use orbit superposition models to determine that the black hole at the centre of NGC 1600 has a mass of 17 billion solar masses. The spatial distribution of stars near the centre of NGC 1600 is rather diffuse. We find that the region of depleted stellar density in the cores of massive elliptical galaxies extends over the same radius as the gravitational sphere of influence of the central black holes, and interpret this as the dynamical imprint of the black holes.

4.
Nature ; 533(7604): 504-8, 2016 05 26.
Article in English | MEDLINE | ID: mdl-27225122

ABSTRACT

Quiescent galaxies with little or no ongoing star formation dominate the population of galaxies with masses above 2 × 10(10) times that of the Sun; the number of quiescent galaxies has increased by a factor of about 25 over the past ten billion years (refs 1-4). Once star formation has been shut down, perhaps during the quasar phase of rapid accretion onto a supermassive black hole, an unknown mechanism must remove or heat the gas that is subsequently accreted from either stellar mass loss or mergers and that would otherwise cool to form stars. Energy output from a black hole accreting at a low rate has been proposed, but observational evidence for this in the form of expanding hot gas shells is indirect and limited to radio galaxies at the centres of clusters, which are too rare to explain the vast majority of the quiescent population. Here we report bisymmetric emission features co-aligned with strong ionized-gas velocity gradients from which we infer the presence of centrally driven winds in typical quiescent galaxies that host low-luminosity active nuclei. These galaxies are surprisingly common, accounting for as much as ten per cent of the quiescent population with masses around 2 × 10(10) times that of the Sun. In a prototypical example, we calculate that the energy input from the galaxy's low-level active supermassive black hole is capable of driving the observed wind, which contains sufficient mechanical energy to heat ambient, cooler gas (also detected) and thereby suppress star formation.

5.
Sci Adv ; 9(28): eadg8287, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37436994

ABSTRACT

Quasar-driven outflows on galactic scales are a routinely invoked ingredient for galaxy formation models. We report the discovery of ionized gas nebulae surrounding three luminous red quasars at z ~ 0.4 from Gemini integral field unit observations. All these nebulae feature unprecedented pairs of "superbubbles" extending ~20 kpc in diameter, and the line-of-sight velocity difference between the red- and blueshifted bubbles reaches up to ~1200 km/s. Their spectacular dual-bubble morphology (in analogy to the galactic "Fermi bubbles") and their kinematics provide unambiguous evidence for galaxy-wide quasar-driven outflows, in parallel with the quasi-spherical outflows similar in size from luminous type 1 and type 2 quasars at concordant redshift. These bubble pairs manifest themselves as a signpost of the short-lived superbubble "break-out" phase, when the quasar wind drives the bubbles to escape the confinement from the dense environment and plunge into the galactic halo with a high-velocity expansion.

6.
Nature ; 470(7332): 45-6, 2011 Feb 03.
Article in English | MEDLINE | ID: mdl-21293365
7.
Sci Am ; 306(1): 40-7, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22279833
8.
Nat Commun ; 3: 1304, 2012.
Article in English | MEDLINE | ID: mdl-23250434

ABSTRACT

Bridging the gap between the approximately ten solar mass 'stellar mass' black holes and the 'supermassive' black holes of millions to billions of solar masses are the elusive 'intermediate-mass' black holes. Their discovery is key to understanding whether supermassive black holes can grow from stellar-mass black holes or whether a more exotic process accelerated their growth soon after the Big Bang. Currently, tentative evidence suggests that the progenitors of supermassive black holes were formed as ∼10(4)-10(5) M(⊙) black holes via the direct collapse of gas. Ongoing searches for intermediate-mass black holes at galaxy centres will help shed light on this formation mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL