Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
BMC Microbiol ; 18(1): 110, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30189859

ABSTRACT

BACKGROUND: The effects of gut microbiota on human traits are expected to be small to moderate and adding the complexity of the human diseases, microbiome research demands big sample sizes. Fecal samples for such studies are mostly self-collected by participants at home. This imposes an extra level of complexity as sample collection and storage can be challenging. Effective, low-burden collection and storage methods allowing fecal samples to be transported properly and ensuring optimal quality and quantity of bacterial DNA for upstream analyses are necessary. Moreover, accurate assessment of the microbiome composition also depends on bacterial DNA extraction method. The aim of this study was to evaluate the reliability and efficiency of the OMNIgene•GUT kit as a participant-fecal friendly collection method (storage at room temperature for 24 h (O24h) or 7 days (O7d)) in comparison to the standard collection method (Fresh, storage at 4 °C for less than 24 h) in terms of amount of variability and information content accounting for two common DNA extraction methods. RESULTS: Fourteen fecal samples were collected from healthy individuals (7 males, 7 females). Collection and storage methods did not differ significantly in terms of DNA concentration and Shannon diversity index. Phylum relative abundance showed significant differences for Bacteroidetes, Actinobacteria and Cyanobacteria. The differences were observed between control (Fresh) and O24h methods, but not between Fresh and O7d. These differences were not seen when performing bacterial DNA quantification based on three bacterial groups: Bacteroides spp., Bifidobacterium spp. and Clostridium cluster IV, which represent three major phyla: Bacteroidetes, Actinobacteria and Firmicutes respectively. The two DNA extraction methods differ in terms of DNA quantity, quality, bacterial diversity and bacterial relative abundance. Furthermore, principal component analysis revealed differences in microbial structure, which are driven by the DNA extraction methods more than the collection/storage methods. CONCLUSION: Our results have highlighted the potential of using the OMNIgene•GUT kit for collection and storage at ambient temperature, which is convenient for studies aiming to collect large samples by giving participants the possibility to send samples by post. Importantly, we revealed that the choice of DNA extraction method have an impact on the microbiome profiling.


Subject(s)
Bacteria/isolation & purification , Feces/microbiology , Gastrointestinal Microbiome , Specimen Handling/methods , Bacteria/classification , Bacteria/genetics , DNA, Bacterial/genetics , Female , Humans , Male , RNA, Ribosomal, 16S/genetics , Sample Size
2.
J Anim Sci Biotechnol ; 12(1): 75, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-34078434

ABSTRACT

BACKGROUND: Risk factors for the etiology of post-weaning diarrhea, a major problem in swine industry associated with enormous economic losses, remain to be fully elucidated. In concordance with the ethical concerns raised by animal experiments, we developed a new in vitro model of the weaning piglet colon (MPigut-IVM) including a mucin bead compartment to reproduce the mucus surface from the gut to which gut microbes can adhere. RESULTS: Our results indicated that the MPigut-IVM is able to establish a representative piglet archaeal and bacterial colon microbiota in terms of taxonomic composition and function. The MPigut-IVM was consequently used to investigate the potential effects of feed deprivation, a common consequence of weaning in piglets, on the microbiota. The lack of nutrients in the MPigut-IVM led to an increased abundance of Prevotellaceae and Escherichia-Shigella and a decrease in Bacteroidiaceae and confirms previous in vivo findings. On top of a strong increase in redox potential, the feed deprivation stress induced modifications of microbial metabolite production such as a decrease in acetate and an increase in proportional valerate, isovalerate and isobutyrate production. CONCLUSIONS: The MPigut-IVM is able to simulate luminal and mucosal piglet microbiota and represent an innovative tool for comparative studies to investigate the impact of weaning stressors on piglet microbiota. Besides, weaning-associated feed deprivation in piglets provokes disruptions of MPigut-IVM microbiota composition and functionality and could be implicated in the onset of post-weaning dysbiosis in piglets.

3.
Antibiotics (Basel) ; 10(9)2021 Sep 11.
Article in English | MEDLINE | ID: mdl-34572682

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is the main infectious agent responsible for piglet post-weaning diarrhea with high mortality rates. Antimicrobials represent the current principal strategy for treating ETEC infections in pig farms, but the occurrence of multi-resistant bacterial strains has considerably increased in the last decades. Thus, finding non-antibiotic alternatives becomes a real emergency. In this context, we investigated the effect of a live yeast strain, Saccharomyces cerevisiae var boulardii CNCM I-1079 (SB) in an in vitro model of the weaning piglet colon implemented with a mucus phase (MPigut-IVM) inoculated with ETEC and coupled with an intestinal porcine cell line IPI-2I. We showed that SB was able to modulate the in vitro microbiota through an increase in Bacteroidiaceae and a decrease in Prevotellaceae families. Effluents collected from the SB treated bioreactors were able to mitigate the expression level of genes encoding non-gel forming mucins, tight junction proteins, innate immune pathway, and pro-inflammatory response in IPI-2I cells. Furthermore, SB exerted a significant protective effect against ETEC adhesion on porcine IPEC-J2 intestinal cells in a dose-dependent manner and showed a positive effect on ETEC-challenged IPEC-J2 by lowering expression of genes involved in pro-inflammatory immune responses. Our results showed that the strain SB CNCM I-1079 could prevent microbiota dysbiosis associated with weaning and protect porcine enterocytes from ETEC infections by reducing bacterial adhesion and modulating the inflammatory response.

4.
Front Microbiol ; 12: 703421, 2021.
Article in English | MEDLINE | ID: mdl-34349744

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is the principal pathogen responsible for post-weaning diarrhea in newly weaned piglets. Expansion of ETEC at weaning is thought to be the consequence of various stress factors such as transient anorexia, dietary change or increase in intestinal inflammation and permeability, but the exact mechanisms remain to be elucidated. As the use of animal experiments raise more and more ethical concerns, we used a recently developed in vitro model of piglet colonic microbiome and mucobiome, the MPigut-IVM, to evaluate the effects of a simulated weaning transition and pathogen challenge at weaning. Our data suggested that the tested factors impacted the composition and functionality of the MPigut-IVM microbiota. The simulation of weaning transition led to an increase in relative abundance of the Prevotellaceae family which was further promoted by the presence of the ETEC strain. In contrast, several beneficial families such as Bacteroidiaceae or Ruminococcaceae and gut health related short chain fatty acids like butyrate or acetate were reduced upon simulated weaning. Moreover, the incubation of MPigut-IVM filtrated effluents with porcine intestinal cell cultures showed that ETEC challenge in the in vitro model led to an increased expression of pro-inflammatory genes by the porcine cells. This study provides insights about the etiology of a dysbiotic microbiota in post-weaning piglets.

5.
Microorganisms ; 7(9)2019 Sep 12.
Article in English | MEDLINE | ID: mdl-31547478

ABSTRACT

Dietary, environmental, and social stresses induced by weaning transition in pig production are associated with alterations of gut microbiota, diarrhea, and enteric infections. With the boom of -omic technologies, numerous studies have investigated the dynamics of fecal bacterial communities of piglets throughout weaning but much less research has been focused on the composition and functional properties of microbial communities inhabiting other gastrointestinal segments. The objective of the present study was to bring additional information about the piglet bacterial and archaeal microbiota throughout the entire digestive tract, both at the structural level by using quantitative PCR and high-throughput sequencing, and on functionality by measurement of short-chain fatty acids and predictions using Tax4Fun tool. Our results highlighted strong structural and functional differences between microbial communities inhabiting the fore and the lower gut as well as a quantitatively important archaeal community in the hindgut. The presence of opportunistic pathogens was also noticed throughout the entire digestive tract and could trigger infection emergence. Understanding the role of the intestinal piglet microbiota at weaning could provide further information about the etiology of post-weaning infections and lead to the development of effective preventive solutions.

6.
FEMS Microbiol Rev ; 43(5): 457-489, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31162610

ABSTRACT

A close symbiotic relationship exists between the intestinal microbiota and its host. A critical component of gut homeostasis is the presence of a mucus layer covering the gastrointestinal tract. Mucus is a viscoelastic gel at the interface between the luminal content and the host tissue that provides a habitat to the gut microbiota and protects the intestinal epithelium. The review starts by setting up the biological context underpinning the need for experimental models to study gut bacteria-mucus interactions in the digestive environment. We provide an overview of the structure and function of intestinal mucus and mucins, their interactions with intestinal bacteria (including commensal, probiotics and pathogenic microorganisms) and their role in modulating health and disease states. We then describe the characteristics and potentials of experimental models currently available to study the mechanisms underpinning the interaction of mucus with gut microbes, including in vitro, ex vivo and in vivo models. We then discuss the limitations and challenges facing this field of research.


Subject(s)
Gastrointestinal Microbiome , Gastrointestinal Tract/physiology , Microbial Interactions , Mucus/microbiology , Animals , Gastrointestinal Tract/microbiology , Homeostasis , Host Microbial Interactions , Humans , In Vitro Techniques , Intestinal Mucosa/microbiology , Mice , Models, Animal , Mucins/chemistry , Mucins/metabolism , Rats
7.
Trends Microbiol ; 25(10): 851-873, 2017 10.
Article in English | MEDLINE | ID: mdl-28602521

ABSTRACT

Weaning is a critical event in the pig's life cycle, frequently associated with severe enteric infections and overuse of antibiotics; this raises serious economic and public health concerns. In this review, we explain why gut microbiota dysbiosis, induced by abrupt changes in the diet and environment of piglets, emerges as a leading cause of post-weaning diarrhea, even if the exact underlying mechanisms remain unclear. Then, we focus on nonantimicrobial alternatives, such as zinc oxide, essential oils, and prebiotics or probiotics, which are currently evaluated to restore intestinal balance and allow a better management of the crucial weaning transition. Finally, we discuss how in vitro models of the piglet gut could be advantageously used as a complement to ex vivo and in vivo studies for the development and testing of new feed additives.


Subject(s)
Dysbiosis/microbiology , Dysbiosis/physiopathology , Gastrointestinal Microbiome/physiology , Swine/microbiology , Swine/physiology , Animals , Diet/methods , Intestines/microbiology , Intestines/physiology , Microbiota/physiology , Probiotics/administration & dosage , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL