Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 289
Filter
1.
Nature ; 623(7989): 949-955, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38030777

ABSTRACT

Pyridinium electrolytes are promising candidates for flow-battery-based energy storage1-4. However, the mechanisms underlying both their charge-discharge processes and overall cycling stability remain poorly understood. Here we probe the redox behaviour of pyridinium electrolytes under representative flow battery conditions, offering insights into air tolerance of batteries containing these electrolytes while providing a universal physico-chemical descriptor of their reversibility. Leveraging a synthetic library of extended bispyridinium compounds, we track their performance over a wide range of potentials and identify the singlet-triplet free energy gap as a descriptor that successfully predicts the onset of previously unidentified capacity fade mechanisms. Using coupled operando nuclear magnetic resonance and electron paramagnetic resonance spectroscopies5,6, we explain the redox behaviour of these electrolytes and determine the presence of two distinct regimes (narrow and wide energy gaps) of electrochemical performance. In both regimes, we tie capacity fade to the formation of free radical species, and further show that π-dimerization plays a decisive role in suppressing reactivity between these radicals and trace impurities such as dissolved oxygen. Our findings stand in direct contrast to prevailing views surrounding the role of π-dimers in redox flow batteries1,4,7-11 and enable us to efficiently mitigate capacity fade from oxygen even on prolonged (days) exposure to air. These insights pave the way to new electrolyte systems, in which reactivity of reduced species is controlled by their propensity for intra- and intermolecular pairing of free radicals, enabling operation in air.

2.
Nature ; 594(7864): 522-528, 2021 06.
Article in English | MEDLINE | ID: mdl-34163058

ABSTRACT

The key to advancing lithium-ion battery technology-in particular, fast charging-is the ability to follow and understand the dynamic processes occurring in functioning materials under realistic conditions, in real time and on the nano- to mesoscale. Imaging of lithium-ion dynamics during battery operation (operando imaging) at present requires sophisticated synchrotron X-ray1-7 or electron microscopy8,9 techniques, which do not lend themselves to high-throughput material screening. This limits rapid and rational materials improvements. Here we introduce a simple laboratory-based, optical interferometric scattering microscope10-13 to resolve nanoscopic lithium-ion dynamics in battery materials, and apply it to follow cycling of individual particles of the archetypal cathode material14,15, LixCoO2, within an electrode matrix. We visualize the insulator-to-metal, solid solution and lithium ordering phase transitions directly and determine rates of lithium diffusion at the single-particle level, identifying different mechanisms on charge and discharge. Finally, we capture the dynamic formation of domain boundaries between different crystal orientations associated with the monoclinic lattice distortion at the Li0.5CoO2 composition16. The high-throughput nature of our methodology allows many particles to be sampled across the entire electrode and in future will enable exploration of the role of dislocations, morphologies and cycling rate on battery degradation. The generality of our imaging concept means that it can be applied to study any battery electrode, and more broadly, systems where the transport of ions is associated with electronic or structural changes. Such systems include nanoionic films, ionic conducting polymers, photocatalytic materials and memristors.

3.
Nature ; 579(7798): 224-228, 2020 03.
Article in English | MEDLINE | ID: mdl-32123353

ABSTRACT

Large-scale energy storage is becoming increasingly critical to balancing renewable energy production and consumption1. Organic redox flow batteries, made from inexpensive and sustainable redox-active materials, are promising storage technologies that are cheaper and less environmentally hazardous than vanadium-based batteries, but they have shorter lifetimes and lower energy density2,3. Thus, fundamental insight at the molecular level is required to improve performance4,5. Here we report two in situ nuclear magnetic resonance (NMR) methods of studying redox flow batteries, which are applied to two redox-active electrolytes: 2,6-dihydroxyanthraquinone (DHAQ) and 4,4'-((9,10-anthraquinone-2,6-diyl)dioxy) dibutyrate (DBEAQ). In the first method, we monitor the changes in the 1H NMR shift of the liquid electrolyte as it flows out of the electrochemical cell. In the second method, we observe the changes that occur simultaneously in the positive and negative electrodes in the full electrochemical cell. Using the bulk magnetization changes (observed via the 1H NMR shift of the water resonance) and the line broadening of the 1H shifts of the quinone resonances as a function of the state of charge, we measure the potential differences of the two single-electron couples, identify and quantify the rate of electron transfer between the reduced and oxidized species, and determine the extent of electron delocalization of the unpaired spins over the radical anions. These NMR techniques enable electrolyte decomposition and battery self-discharge to be explored in real time, and show that DHAQ is decomposed electrochemically via a reaction that can be minimized by limiting the voltage used on charging. We foresee applications of these NMR methods in understanding a wide range of redox processes in flow and other electrochemical systems.


Subject(s)
Electric Power Supplies , Magnetic Resonance Spectroscopy , Electrolytes/chemistry , Electrons , Oxidation-Reduction
4.
Nat Mater ; 23(4): 535-542, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38308087

ABSTRACT

Oxides with a face-centred cubic (fcc) anion sublattice are generally not considered as solid-state electrolytes as the structural framework is thought to be unfavourable for lithium (Li) superionic conduction. Here we demonstrate Li superionic conductivity in fcc-type oxides in which face-sharing Li configurations have been created through cation over-stoichiometry in rocksalt-type lattices via excess Li. We find that the face-sharing Li configurations create a novel spinel with unconventional stoichiometry and raise the energy of Li, thereby promoting fast Li-ion conduction. The over-stoichiometric Li-In-Sn-O compound exhibits a total Li superionic conductivity of 3.38 × 10-4 S cm-1 at room temperature with a low migration barrier of 255 meV. Our work unlocks the potential of designing Li superionic conductors in a prototypical structural framework with vast chemical flexibility, providing fertile ground for discovering new solid-state electrolytes.

5.
Nat Mater ; 23(4): 519-526, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38480865

ABSTRACT

Hyperfluorescence shows great promise for the next generation of commercially feasible blue organic light-emitting diodes, for which eliminating the Dexter transfer to terminal emitter triplet states is key to efficiency and stability. Current devices rely on high-gap matrices to prevent Dexter transfer, which unfortunately leads to overly complex devices from a fabrication standpoint. Here we introduce a molecular design where ultranarrowband blue emitters are covalently encapsulated by insulating alkylene straps. Organic light-emitting diodes with simple emissive layers consisting of pristine thermally activated delayed fluorescence hosts doped with encapsulated terminal emitters exhibit negligible external quantum efficiency drops compared with non-doped devices, enabling a maximum external quantum efficiency of 21.5%. To explain the high efficiency in the absence of high-gap matrices, we turn to transient absorption spectroscopy. It is directly observed that Dexter transfer from a pristine thermally activated delayed fluorescence sensitizer host can be substantially reduced by an encapsulated terminal emitter, opening the door to highly efficient 'matrix-free' blue hyperfluorescence.

6.
Nano Lett ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38592099

ABSTRACT

The nature of ion-ion interactions in electrolytes confined to nanoscale pores has important implications for energy storage and separation technologies. However, the physical effects dictating the structure of nanoconfined electrolytes remain debated. Here we employ machine-learning-based molecular dynamics simulations to investigate ion-ion interactions with density functional theory level accuracy in a prototypical confined electrolyte, aqueous NaCl within graphene slit pores. We find that the free energy of ion pairing in highly confined electrolytes deviates substantially from that in bulk solutions, observing a decrease in contact ion pairing but an increase in solvent-separated ion pairing. These changes arise from an interplay of ion solvation effects and graphene's electronic structure. Notably, the behavior observed from our first-principles-level simulations is not reproduced even qualitatively with the classical force fields conventionally used to model these systems. The insight provided in this work opens new avenues for predicting and controlling the structure of nanoconfined electrolytes.

7.
J Am Chem Soc ; 146(14): 9897-9910, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38560816

ABSTRACT

Ion adsorption at solid-water interfaces is crucial for many electrochemical processes involving aqueous electrolytes including energy storage, electrochemical separations, and electrocatalysis. However, the impact of the hydronium (H3O+) and hydroxide (OH-) ions on the ion adsorption and surface charge distributions remains poorly understood. Many fundamental studies of supercapacitors focus on non-aqueous electrolytes to avoid addressing the role of functional groups and electrolyte pH in altering ion uptake. Achieving microscopic level characterization of interfacial mixed ion adsorption is particularly challenging due to the complex ion dynamics, disordered structures, and hierarchical porosity of the carbon electrodes. This work addresses these challenges starting with pH measurements to quantify the adsorbed H3O+ concentrations, which reveal the basic nature of the activated carbon YP-50F commonly used in supercapacitors. Solid-state NMR spectroscopy is used to study the uptake of lithium bis(trifluoromethanesulfonyl)-imide (LiTFSI) aqueous electrolyte in the YP-50F carbon across the full pH range. The NMR data analysis highlights the importance of including the fast ion-exchange processes for accurate quantification of the adsorbed ions. Under acidic conditions, more TFSI- ions are adsorbed in the carbon pores than Li+ ions, with charge compensation also occurring via H3O+ adsorption. Under neutral and basic conditions, when the carbon's surface charge is close to zero, the Li+ and TFSI- ions exhibit similar but lower affinities toward the carbon pores. Our experimental approach and evidence of H3O+ uptake in pores provide a methodology to relate the local structure to the function and performance in a wide range of materials for energy applications and beyond.

8.
J Am Chem Soc ; 146(19): 13133-13141, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695282

ABSTRACT

Triphenylmethyl (trityl) radicals have shown potential for use in organic optoelectronic applications, but the design of practical trityl structures has been limited to donor/radical charge-transfer systems due to the poor luminescence of alternant symmetry hydrocarbons. Here, we circumvent the symmetry-forbidden transition of alternant hydrocarbons via excited-state symmetry breaking in a series of phenyl-substituted tris(2,4,6-trichlorophenyl)methyl (TTM) radicals. We show that 3-fold phenyl substitution enhances the emission of the TTM radical and that steric control modulates the optical properties in these systems. Simple ortho-methylphenyl substitution boosts the photoluminescence quantum efficiency from 1% (for TTM) to 65% at a peak wavelength of 612 nm (for 2-T3TTM) in solution. In the crystalline solid state, the neat 2-T3TTM radical shows a remarkably high photoluminescence quantum efficiency of 25% for emission peaking at 706 nm. This has implications in the design of aryl-substituted radical structures where the electronic coupling of the substituents influences variables such as emission, charge transfer, and spin interaction.

9.
Nat Mater ; 22(6): 746-753, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37081171

ABSTRACT

Although organic mixed ionic-electronic conductors are widely proposed for use in bioelectronics, energy generation/storage and neuromorphic computing, our fundamental understanding of the charge-compensating interactions between the ionic and electronic carriers and the dynamics of ions remains poor, particularly for hydrated devices and on electrochemical cycling. Here we show that operando 23Na and 1H nuclear magnetic resonance (NMR) spectroscopy can quantify cation and water movement during the doping/dedoping of films comprising the widely used mixed conductor poly(3,4-ethylene dioxythiophene) poly(styrene sulfonate) (PEDOT:PSS). A distinct 23Na quadrupolar splitting is observed due to the partial ordering of the PSS chains within the PEDOT:PSS-rich domains, with respect to the substrate. Operando 23Na NMR studies reveal a close-to-linear correlation between the quadrupolar splitting and the charge stored, which is quantitatively explained by a model in which the holes on the PEDOT backbone are bound to the PSS SO3- groups; an increase in hole concentration during doping inversely correlates with the number of Na+ ions bound to the PSS chains within the PEDOT-rich ordered domains, leading to a decrease in ions within the ordered regions and a decrease in quadrupolar splitting. The Na+-to-electron coupling efficiency, measured via 23Na NMR intensity changes, is close to 100% when using a 1 M NaCl electrolyte. Operando 1H NMR spectroscopy confirms that the Na+ ions injected into/extracted from the wet films are hydrated. These findings shed light on the working principles of organic mixed conductors and demonstrate the utility of operando NMR spectroscopy in revealing structure-property relationships in electroactive polymers.

10.
Nat Mater ; 22(9): 1128-1135, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37500959

ABSTRACT

The niobium oxide polymorph T-Nb2O5 has been extensively investigated in its bulk form especially for applications in fast-charging batteries and electrochemical (pseudo)capacitors. Its crystal structure, which has two-dimensional (2D) layers with very low steric hindrance, allows for fast Li-ion migration. However, since its discovery in 1941, the growth of single-crystalline thin films and its electronic applications have not yet been realized, probably due to its large orthorhombic unit cell along with the existence of many polymorphs. Here we demonstrate the epitaxial growth of single-crystalline T-Nb2O5 thin films, critically with the ionic transport channels oriented perpendicular to the film's surface. These vertical 2D channels enable fast Li-ion migration, which we show gives rise to a colossal insulator-metal transition, where the resistivity drops by 11 orders of magnitude due to the population of the initially empty Nb 4d0 states by electrons. Moreover, we reveal multiple unexplored phase transitions with distinct crystal and electronic structures over a wide range of Li-ion concentrations by comprehensive in situ experiments and theoretical calculations, which allow for the reversible and repeatable manipulation of these phases and their distinct electronic properties. This work paves the way for the exploration of novel thin films with ionic channels and their potential applications.

11.
Faraday Discuss ; 248(0): 355-380, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-37807702

ABSTRACT

Lithium-air batteries promise exceptional energy density while avoiding the use of transition metals in their cathodes, however, their practical adoption is currently held back by their short lifetimes. These short lifetimes are largely caused by electrolyte breakdown, but despite extensive searching, an electrolyte resistant to breakdown has yet to be found. This paper considers the requirements placed on an electrolyte for it to be considered usable in a practical cell. We go on to examine ways, through judicious cell design, of relaxing these requirements to allow for a broader range of compounds to be considered. We conclude by suggesting types of molecules that could be explored for future cells. With this work, we aim to broaden the scope of future searches for electrolytes and inform new cell design.

12.
Faraday Discuss ; 248(0): 145-159, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-37812402

ABSTRACT

Iodide-based redox mediation in Li-O2 batteries is regarded as a promising system due to its relatively high round-trip efficiency, compared to alternative systems. Here we explore the role of electrolyte composition in the solvation of I-, which has been shown to be critical for the efficient operation of this redox mediator, using a molecular dynamics approach. A combinatorial exploration of I- and H2O concentrations was performed, for a fixed concentration of Li+, across a series of glymes, with increasing chain length (mono- to tetraglyme). The resulting radial distribution functions show that shorter glymes allow for a closer packing of the I- redox mediator. Furthermore, increasing the I- concentration also reduces the solvation of Li+ in the glymes, especially in G2. The presence of water further pulls the I- and Li+ together. With increasing water content, its presence in the iodide's coordination shell increases markedly - an effect most pronounced for monoglyme. Competition between Li+ and I- for the coordination of water is modulated by the different solvents as they perturb the local coordination shell of these important complexes, with longer chain lengths being less affected by increases in water concentrations.

13.
Faraday Discuss ; 248(0): 277-297, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-37870402

ABSTRACT

The demand for electric vehicles with extended ranges has created a renaissance of interest in replacing the common metal-ion with higher energy-density metal-anode batteries. However, the potential battery safety issues associated with lithium metal must be addressed to enable lithium metal battery chemistries. A considerable performance gap between lithium (Li) symmetric cells and practical Li batteries motivated us to explore the correlation between the shape of voltage traces and degradation. We coupled impedance spectroscopy and operando NMR and used the new approach to show that transient (i.e., soft) shorts form in realistic conditions for battery applications; however, they are typically overlooked, as their electrochemical signatures are often not distinct. The typical rectangular-shaped voltage trace, widely considered ideal, was proven, under the conditions studied here, to be a result of soft shorts. Recoverable soft-shorted cells were demonstrated during a symmetric cell polarisation experiment, defining a new type of critical current density: the current density at which the soft shorts are not reversible. Moreover, we demonstrated that soft shorts, detected via electrochemical impedance spectroscopy (EIS) and validated via operando NMR, are predictive towards the formation of hard shorts, showing the potential use of EIS as a relatively low-cost and non-destructive method for early detection of catastrophic shorts and battery failure while demonstrating the strength of operando NMR as a research tool for metal plating in lithium batteries.

14.
Faraday Discuss ; 248(0): 9-28, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38105743

ABSTRACT

The lithium-air battery (LAB) is arguably the battery with the highest energy density, but also a battery with significant challenges to be overcome before it can be used commercially in practical devices. Here, we discuss experimental approaches developed by some of the authors to understand the function and failure of lithium-oxygen batteries. For example, experiments in which nuclear magnetic resonance (NMR) spectroscopy was used to quantify dissolved oxygen concentrations and diffusivity are described. 17O magic angle spinning (MAS) NMR spectra of electrodes extracted from batteries at different states of charge (SOC) allowed the electrolyte decomposition products at each stage to be determined. For instance, the formation of Li2CO3 and LiOH in a dimethoxyethane (DME) solvent and their subsequent removal on charging was followed. Redox mediators have been used to chemically reduce oxygen or to chemically oxidise Li2O2 in order to prevent electrode clogging by insulating compounds, which leads to lower capacities and rapid degradation; the studies of these mediators represent an area where NMR and electron paramagnetic resonance (EPR) studies could play a role in unravelling reaction mechanisms. Finally, recently developed coupled in situ NMR and electrochemical impedance spectroscopy (EIS) are used to characterise the charge transport mechanism in lithium symmetric cells and to distinguish between electronic and ionic transport, demonstrating the formation of transient (soft) shorts in common lithium-oxygen electrolytes. More stable solid electrolyte interphases are formed under an oxygen atmosphere, which helps stabilise the lithium anode on cycling.

15.
Inorg Chem ; 63(2): 1151-1165, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38174709

ABSTRACT

The Nb2PdxS5 (x ≈ 0.74) superconductor with a Tc of 6.5 K is reduced by the intercalation of lithium in ammonia solution or electrochemically to produce an intercalated phase with expanded lattice parameters. The structure expands by 2% in volume and maintains the C2/m symmetry and rigidity due to the PdS4 units linking the layers. Experimental and computational analysis of the chemically synthesized bulk sample shows that Li occupies triangular prismatic sites between the layers with an occupancy of 0.33(4). This level of intercalation suppresses the superconductivity, with the injection of electrons into the metallic system observed to also reduce the Pauli paramagnetism by ∼40% as the bands are filled to a Fermi level with a lower density of states than in the host material. Deintercalation using iodine partially restores the superconductivity, albeit at a lower Tc of ∼5.5 K and with a smaller volume fraction than in fresh Nb2PdxS5. Electrochemical intercalation reproduces the chemical intercalation product at low Li content (<0.4) and also enables greater reduction, but at higher Li contents (≥0.4) accessed by this route, phase separation occurs with the indication that Li occupies another site.

16.
Nature ; 559(7715): 556-563, 2018 07.
Article in English | MEDLINE | ID: mdl-30046074

ABSTRACT

The maximum power output and minimum charging time of a lithium-ion battery depend on both ionic and electronic transport. Ionic diffusion within the electrochemically active particles generally represents a fundamental limitation to the rate at which a battery can be charged and discharged. To compensate for the relatively slow solid-state ionic diffusion and to enable high power and rapid charging, the active particles are frequently reduced to nanometre dimensions, to the detriment of volumetric packing density, cost, stability and sustainability. As an alternative to nanoscaling, here we show that two complex niobium tungsten oxides-Nb16W5O55 and Nb18W16O93, which adopt crystallographic shear and bronze-like structures, respectively-can intercalate large quantities of lithium at high rates, even when the sizes of the niobium tungsten oxide particles are of the order of micrometres. Measurements of lithium-ion diffusion coefficients in both structures reveal room-temperature values that are several orders of magnitude higher than those in typical electrode materials such as Li4Ti5O12 and LiMn2O4. Multielectron redox, buffered volume expansion, topologically frustrated niobium/tungsten polyhedral arrangements and rapid solid-state lithium transport lead to extremely high volumetric capacities and rate performance. Unconventional materials and mechanisms that enable lithiation of micrometre-sized particles in minutes have implications for high-power applications, fast-charging devices, all-solid-state energy storage systems, electrode design and material discovery.

17.
Nat Mater ; 21(11): 1306-1313, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35970962

ABSTRACT

To rationalize and improve the performance of newly developed high-rate battery electrode materials, it is crucial to understand the ion intercalation and degradation mechanisms occurring during realistic battery operation. Here we apply a laboratory-based operando optical scattering microscopy method to study micrometre-sized rod-like particles of the anode material Nb14W3O44 during high-rate cycling. We directly visualize elongation of the particles, which, by comparison with ensemble X-ray diffraction, allows us to determine changes in the state of charge of individual particles. A continuous change in scattering intensity with state of charge enables the observation of non-equilibrium kinetic phase separations within individual particles. Phase field modelling (informed by pulsed-field-gradient nuclear magnetic resonance and electrochemical experiments) supports the kinetic origin of this separation, which arises from the state-of-charge dependence of the Li-ion diffusion coefficient. The non-equilibrium phase separations lead to particle cracking at high rates of delithiation, particularly in longer particles, with some of the resulting fragments becoming electrically disconnected on subsequent cycling. These results demonstrate the power of optical scattering microscopy to track rapid non-equilibrium processes that would be inaccessible with established characterization techniques.

18.
Chem Rev ; 121(20): 12681-12745, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34351127

ABSTRACT

Carbon dioxide capture and mitigation form a key part of the technological response to combat climate change and reduce CO2 emissions. Solid materials capable of reversibly absorbing CO2 have been the focus of intense research for the past two decades, with promising stability and low energy costs to implement and operate compared to the more widely used liquid amines. In this review, we explore the fundamental aspects underpinning solid CO2 sorbents based on alkali and alkaline earth metal oxides operating at medium to high temperature: how their structure, chemical composition, and morphology impact their performance and long-term use. Various optimization strategies are outlined to improve upon the most promising materials, and we combine recent advances across disparate scientific disciplines, including materials discovery, synthesis, and in situ characterization, to present a coherent understanding of the mechanisms of CO2 absorption both at surfaces and within solid materials.


Subject(s)
Carbon Dioxide , Oxides , Adsorption , Amines/chemistry , Carbon Dioxide/chemistry , Oxides/chemistry , Temperature
19.
J Am Chem Soc ; 144(41): 18714-18729, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36201656

ABSTRACT

Modern studies of lithium-ion battery (LIB) cathode materials employ a large range of experimental and theoretical techniques to understand the changes in bulk and local chemical and electronic structures during electrochemical cycling (charge and discharge). Despite its being rich in useful chemical information, few studies to date have used 17O NMR spectroscopy. Many LIB cathode materials contain paramagnetic ions, and their NMR spectra are dominated by hyperfine and quadrupolar interactions, giving rise to broad resonances with extensive spinning sideband manifolds. In principle, careful analysis of these spectra can reveal information about local structural distortions, magnetic exchange interactions, structural inhomogeneities (Li+ concentration gradients), and even the presence of redox-active O anions. In this Perspective, we examine the primary interactions governing 17O NMR spectroscopy of LIB cathodes and outline how 17O NMR may be used to elucidate the structure of pristine cathodes and their structural evolution on cycling, providing insight into the challenges in obtaining and interpreting the spectra. We also discuss the use of 17O NMR in the context of anionic redox and the role this technique may play in understanding the charge compensation mechanisms in high-capacity cathodes, and we provide suggestions for employing 17O NMR in future avenues of research.

20.
J Am Chem Soc ; 144(36): 16350-16365, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36040461

ABSTRACT

All-solid-state batteries based on non-combustible solid electrolytes are promising candidates for safe energy storage systems. In addition, they offer the opportunity to utilize metallic lithium as an anode. However, it has proven to be a challenge to design an electrolyte that combines high ionic conductivity and processability with thermodynamic stability toward lithium. Herein, we report a new highly conducting solid solution that offers a route to overcome these challenges. The Li-P-S ternary was first explored via a combination of high-throughput crystal structure predictions and solid-state synthesis (via ball milling) of the most promising compositions, specifically, phases within the Li3P-Li2S tie line. We systematically characterized the structural properties and Li-ion mobility of the resulting materials by X-ray and neutron diffraction, solid-state nuclear magnetic resonance spectroscopy (relaxometry), and electrochemical impedance spectroscopy. A Li3P-Li2S metastable solid solution was identified, with the phases adopting the fluorite (Li2S) structure with P substituting for S and the extra Li+ ions occupying the octahedral voids and contributing to the ionic transport. The analysis of the experimental data is supported by extensive quantum-chemical calculations of both structural stability, diffusivity, and activation barriers for Li+ transport. The new solid electrolytes show Li-ion conductivities in the range of established materials, while their composition guarantees thermodynamic stability toward lithium metal anodes.

SELECTION OF CITATIONS
SEARCH DETAIL