Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Sport Nutr Exerc Metab ; 25(3): 298-306, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25203421

ABSTRACT

This study investigated the effects of creatine and sodium bicarbonate coingestion on mechanical power during repeated sprints. Nine well-trained men (age = 21.6 ± 0.9 yr, stature = 1.82 ± 0.05 m, body mass = 80.1 ±12.8 kg) participated in a double-blind, placebo-controlled, counterbalanced, crossover study using six 10-s repeated Wingate tests. Participants ingested either a placebo (0.5 g·kg(-1) of maltodextrin), 20 g·d(-1) of creatine monohydrate + placebo, 0.3 g·kg(-1) of sodium bicarbonate + placebo, or coingestion + placebo for 7 days, with a 7-day washout between conditions. Participants were randomized into two groups with a differential counterbalanced order. Creatine conditions were ordered first and last. Indices of mechanical power output (W), total work (J) and fatigue index (W·s(-1)) were measured during each test and analyzed using the magnitude of differences between groups in relation to the smallest worthwhile change in performance. Compared with placebo, both creatine (effect size (ES) = 0.37-0.83) and sodium bicarbonate (ES = 0.22-0.46) reported meaningful improvements on indices of mechanical power output. Coingestion provided small meaningful improvements on indices of mechanical power output (W) compared with sodium bicarbonate (ES = 0.28-0.41), but not when compared with creatine (ES = -0.21-0.14). Coingestion provided a small meaningful improvement in total work (J; ES = 0.24) compared with creatine. Fatigue index (W·s(-1)) was impaired in all conditions compared with placebo. In conclusion, there was no meaningful additive effect of creatine and sodium bicarbonate coingestion on mechanical power during repeated sprints.


Subject(s)
Creatine/administration & dosage , Exercise Test/drug effects , Physical Exertion/drug effects , Running/physiology , Sodium Bicarbonate/administration & dosage , Cross-Over Studies , Double-Blind Method , Eating , Humans , Male , Muscle Fatigue/drug effects , Polysaccharides/administration & dosage , Sports Nutritional Physiological Phenomena , Young Adult
2.
Geriatrics (Basel) ; 9(5)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39311233

ABSTRACT

Age-related declines in the musculoskeletal system may place additional demands on the lumbar spine during everyday activities such as walking. This study aimed to investigate age-related differences in the functional demand (FD) of walking on the lumbar spine in older and younger adults. A motion analysis system with integrated force plates was used to acquire kinematic and kinetic data on 12 older (67.3 ± 6.0 years) and 12 younger (24.7 ± 3.1 years) healthy men during walking at a self-selected speed along a 10 m walkway. Isokinetic dynamometry was used to acquire the maximal joint moment capacity of the lumbar spine. The FD of the lumbar spine was calculated as the muscle moment during key phases of the gait cycle (GC) relative to the maximum moment capacity of the lumbar spine. The difference in FD between age groups was not significant (p = 0.07) and there were no significant differences between the young group (YG) and older group (OG) for any individual phase in the GC. Despite the lack of statistical significance, the results indicate that a practical difference may exist, as walking was approximately 20% more functionally demanding on the lumbar spine in the OG compared to the YG. Therefore, older adults may employ modified gait strategies to reduce mechanical load whilst walking to fall within the limits of their maximal force-producing capacity in the lumbar spine, which may have implications for injury risk.

3.
Exp Gerontol ; 193: 112477, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844183

ABSTRACT

PURPOSE: Ageing is associated with cognitive decline. This study investigated the individual and combined effects of resistance exercise (RE) and whey protein supplementation (PRO) on cognitive function in older men. METHODS: In a pooled-groups analysis, 36 older men (age: 67 ± 4 years) were randomised to either RE (2 x/week; n = 18) or no exercise (NE; n = 18), and either PRO (2 × 25 g/d whey protein isolate; n = 18) or control (CON, 2 × 23.75 g maltodextrin/d; n = 18). A sub-analysis was also conducted between RE + CON (n = 9) and RE + PRO (n = 9). At baseline and 12 weeks, participants completed a battery of neuropsychological tests (CANTAB; Cambridge Cognition, UK) and neurobiological, inflammatory, salivary cortisol and insulin sensitivity biomarkers were quantified. RESULTS: PRO improved executive function z-score (+0.31 ± 0.08) greater than CON (+0.06 ± 0.08, P = 0.03) and there was a trend towards improved global cognitive function (P = 0.053). RE and RE + PRO did not improve any cognitive function domains (p ≥ 0.07). RE decreased tumor necrosis factor-alpha (P = 0.02) and interleukin-6 (P = 0.048) concentrations compared to NE, but changes in biomarkers did not correlate with changes in cognitive domains. Muscle strength (r = 0.34, P = 0.045) and physical function (ρ = 0.35-0.51, P < 0.05) outcomes positively correlated with cognitive function domains at baseline, but only Δskeletal muscle index correlated with Δepisodic memory (r = 0.34, P = 0.046) following the intervention. CONCLUSION: In older men, PRO improved cognitive function, most notably executive functioning. RE did not improve any cognitive function domains but did decrease biomarkers of systemic inflammation. No synergistic effects were observed.


Subject(s)
Cognition , Dietary Supplements , Executive Function , Resistance Training , Whey Proteins , Humans , Male , Whey Proteins/administration & dosage , Resistance Training/methods , Aged , Double-Blind Method , Cognition/drug effects , Neuropsychological Tests , Middle Aged , Cognitive Dysfunction , Biomarkers/blood , Hydrocortisone , Insulin Resistance/physiology
4.
Epilepsia Open ; 9(2): 727-738, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38411329

ABSTRACT

OBJECTIVE: To investigate incorporating a ready-to-use 2.5:1 ratio liquid feed into a ketogenic diet (KD) in children and adults with drug-resistant epilepsy. METHODS: Following a three-day baseline, patients (n = 19; age: 19 years [SD 13], range: 8-46 years) followed a KD for 28 days (control period), then incorporated ≥200 mL/day of a ready-to-use liquid feed, made with a ratio of 2.5 g of fat to 1 g of protein plus carbohydrate and including medium chain triglycerides ([MCTs]; 25.6% of total fat/100 mL) for 28 days as part of their KD (intervention period). Outcome measures (control vs intervention period) included gastrointestinal (GI) tolerance, adherence to KD and intervention feed, dietary intake, blood ß-hydroxybutyrate (BHB) concentration, seizure outcomes, health-related quality of life (HRQoL), acceptability and safety. RESULTS: Compared to the control period, during the intervention period, the percentage of patients reporting no GI symptoms increased (+5% [SD 5], p = 0.02); adherence to the KD prescription was similar (p = 0.92) but higher in patients (n = 5) with poor adherence (<50%) to KD during the control period (+33% [SD 26], p = 0.049); total MCT intake increased (+12.1 g/day [SD 14.0], p = 0.002), driven by increases in octanoic (C8; +8.3 g/day [SD 6.4], p < 0.001) and decanoic acid (C10; +5.4 g/day [SD 5.4], p < 0.001); KD ratio decreased (p = 0.047), driven by a nonsignificant increase in protein intake (+11 g/day [SD 44], p = 0.29); seizure outcomes were similar (p ≥ 0.63) but improved in patients (n = 6) with the worst seizure outcomes during the control period (p = 0.04); and HRQoL outcomes were similar. The intervention feed was well adhered to (96% [SD 8]) and accepted (≥88% of patients confirmed). SIGNIFICANCE: These findings provide an evidence-base to support the effective management of children and adults with drug-resistant epilepsy following a KD with the use of a ready-to-use, nutritionally complete, 2.5:1 ratio feed including MCTs. PLAIN LANGUAGE SUMMARY: This study examined the use of a ready-to-use, nutritionally complete, 2.5:1 ratio (2.5 g of fat to 1 g of protein plus carbohydrate) liquid feed, including medium chain triglycerides (MCTs), into a ketogenic diet (KD) in children and adults with drug-resistant epilepsy. The results show that the 2.5:1 ratio feed was well tolerated, adhered to, and accepted in these patients. Increases in MCT intake (particularly C8 and C10) and improvements in seizure outcomes (reduced seizure burden and intensity) and KD adherence also occurred with the 2.5:1 ratio feed in patients with the worst seizures and adherence, respectively.


Subject(s)
Diet, Ketogenic , Drug Resistant Epilepsy , Child , Adult , Humans , Young Adult , Diet, Ketogenic/adverse effects , Diet, Ketogenic/methods , Quality of Life , Triglycerides , Seizures , Carbohydrates
5.
J Clin Med ; 12(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37109285

ABSTRACT

This study investigated age-related differences in trunk kinematics during walking in healthy men. Secondary aims were to investigate the covarying effects of physical activity (PA) and lumbar paravertebral muscle (LPM) morphology on trunk kinematics, and the effect of age on interplanar coupling between the trunk and pelvis. Three-dimensional (3D) trunk and pelvis motion data were obtained for 12 older (67.3 ± 6.0 years) and 12 younger (24.7 ± 3.1 years) healthy men during walking at a self-selected speed along a 10 m walkway. Phase-specific differences were observed in the coronal and transverse planes, with midstance and swing phases highlighted as instances when trunk and pelvic kinematics differed significantly (p < 0.05) between the younger group and older group. Controlling for age, fewer significant positive correlations were revealed between trunk and pelvic ranges and planes of motion. LPM morphology and PA were not significant covariates of age-related differences in trunk kinematics. Age-related differences in trunk kinematics were most apparent in the coronal and transverse planes. The results further indicate ageing causes an uncoupling of interplanar upper body movements during gait. These findings provide important information for rehabilitation programmes in older adults designed to improve trunk motion, as well as enable identification of higher-risk movement patterns related to falling.

6.
Front Nutr ; 10: 1297624, 2023.
Article in English | MEDLINE | ID: mdl-38024371

ABSTRACT

Introduction: There is an emerging need for plant-based, vegan options for patients requiring nutritional support. Methods: Twenty-four adults at risk of malnutrition (age: 59 years (SD 18); Sex: 18 female, 6 male; BMI: 19.0 kg/m2 (SD 3.3); multiple diagnoses) requiring plant-based nutritional support participated in a multi-center, prospective study of a (vegan suitable) multi-nutrient, ready-to-drink, oral nutritional supplement (ONS) [1.5 kcal/mL; 300 kcal, 12 g protein/200 mL bottle, mean prescription 275 mL/day (SD 115)] alongside dietary advice for 28 days. Compliance, anthropometry, malnutrition risk, dietary intake, appetite, acceptability, gastrointestinal (GI) tolerance, nutritional goal(s), and safety were assessed. Results: Patients required a plant-based ONS due to personal preference/variety (33%), religious/cultural reasons (28%), veganism/reduce animal-derived consumption (17%), environmental/sustainability reasons (17%), and health reasons (5%). Compliance was 94% (SD 16). High risk of malnutrition ('MUST' score ≥ 2) reduced from 20 to 16 patients (p = 0.046). Body weight (+0.6 kg (SD 1.2), p = 0.02), BMI (+0.2 kg/m2 (SD 0.5), p = 0.03), total mean energy (+387 kcal/day (SD 416), p < 0.0001) and protein intake (+14 g/day (SD 39), p = 0.03), and the number of micronutrients meeting the UK reference nutrient intake (RNI) (7 vs. 14, p = 0.008) significantly increased. Appetite (Simplified Nutritional Appetite Questionnaire (SNAQ) score; p = 0.13) was maintained. Most GI symptoms were stable throughout the study (p > 0.06) with no serious adverse events related. Discussion: This study highlights that plant-based nutrition support using a vegan-suitable plant-based ONS is highly complied with, improving the nutritional outcomes of patients at risk of malnutrition.

7.
Physiol Rep ; 10(11): e15268, 2022 Jun.
Article in English | MEDLINE | ID: mdl-37815091

ABSTRACT

PURPOSE: To investigate changes in 24-h energy expenditure (EE), substrate oxidation, and body composition following resistance exercise (RE) and a high protein diet via whey protein supplementation (alone and combined) in healthy older men. METHODS: In a pooled groups analysis, 33 healthy older men [(mean ± SE) age: 67 ± 1 years; BMI: 25.4 ± 0.4 kg/m2] were randomized to either RE (2×/week; n = 17) or non-exercise (n = 16) and either a high protein diet via whey protein supplementation (PRO, 2 × 25 g whey protein isolate/d; n = 17) or control (CON, 2 × 23.75 g maltodextrin/d; n = 16). An exploratory sub-analysis was also conducted between RE+CON (n = 8) and RE+PRO (n = 9). At baseline and 12 weeks, participants resided in respiration chambers for measurement of 24-h EE and substrate oxidation and wore an accelerometer for 7 days for estimation of free-living EE. RESULTS: Resistance exercise resulted in greater increases in fat-free mass (1.0 ± 0.3 kg), resting metabolic rate [(RMR) 36 ± 14 kcal/d], sedentary EE (60 ± 33 kcal/d), and sleeping metabolic rate [(SMR) 45 ± 7 kcal/d] compared to non-exercise (p < 0.05); however, RE decreased activity energy expenditure in free-living (-90 ± 25 kcal/d; p = 0.049) and non-exercise activity inside the respiration chamber (-1.9 ± 1.1%; p = 0.049). PRO decreased fat mass [(FM) -0.5 ± 0.3 kg], increased overnight protein oxidation (30 ± 6 g/d), and decreased 24-h protein balance (-20 ± 4 g/d) greater than CON (p < 0.05). RE+PRO decreased FM (-1.0 ± 0.5 kg) greater than RE+CON (p = 0.04). CONCLUSION: Resistance exercise significantly increased RMR, SMR, and sedentary EE in healthy older men, but not total EE. PRO alone and combined with RE decreased FM and aided body weight maintenance. This study was registered at clinicaltrials.gov as NCT03299972.


Subject(s)
Diet, High-Protein , Resistance Training , Male , Humans , Aged , Whey Proteins , Energy Metabolism , Body Composition , Dietary Supplements
8.
Exp Gerontol ; 158: 111651, 2022 02.
Article in English | MEDLINE | ID: mdl-34896568

ABSTRACT

PURPOSE: To determine the individual and combined effects of 12 weeks of resistance exercise (RE) and whey protein supplementation on skeletal muscle strength (primary outcome), mass and physical function, and hormonal and inflammatory biomarkers in older adults. METHODS: Thirty-six healthy older men [(mean±SE) age: 67±1 y; BMI: 25.5±0.4 kg/m2] were randomised to either control (CON; n=9), whey protein (PRO; n=9), RE+control (EX+CON; n=9), or RE+whey protein (EX+PRO; n=9) in a double-blinded fashion. Whole-body RE (2 sets of 8 repetitions and 1 set to volitional failure at 80% 1RM) was performed twice weekly. Supplements (PRO, 25 g whey protein isolate; CON, 23.75 g maltodextrin) were consumed twice daily. RESULTS: EX+CON and EX+PRO increased leg extension (+19±3 kg and +20±3 kg, respectively) and leg press 1RM (+27±3 kg and +39±2 kg, respectively) greater than the CON and PRO groups (P<0.001, Cohen's d=1.50-1.90). RE (EX+CON and EX+PRO groups pooled) also increased fat-free mass (FFM) (+0.9±0.3 kg) and 6-min walk test distance (+21±5 m) and decreased fat mass (-0.4±0.4 kg), and interleukin-6 (-1.0±0.4 pg/mL) and tumor necrosis factor-alpha concentration (-0.7±0.3 pg/mL) greater than non-exercise (CON and PRO groups pooled; P<0.05, Cohen's f=0.37-0.45). Whey protein supplementation (PRO and EX+PRO groups pooled) increased 4-m gait speed greater than control (CON and EX+CON groups pooled) (+0.08±0.03 m/s; P=0.007, f=0.51). CONCLUSION: RE increased muscle strength, FFM and physical function, and decreased markers of systemic inflammation in healthy active older men. Whey protein supplementation alone increased gait speed. No synergistic effects were observed. This study was registered at clinicaltrials.gov as NCT03299972.


Subject(s)
Resistance Training , Aged , Biomarkers/metabolism , Body Composition , Dietary Supplements , Double-Blind Method , Humans , Male , Muscle Strength , Muscle, Skeletal/physiology , Whey Proteins
SELECTION OF CITATIONS
SEARCH DETAIL