ABSTRACT
The X- and W-band electron paramagnetic resonance (EPR) spectroscopies were employed to investigate a series of imidazolidine nitroxide radicals with different number of ethyl and methyl substituents at positions 2 and 5 of a heterocycle in liquid and frozen solutions. The influence of the substituents on the line shape and width was studied experimentally and analyzed using quantum chemical calculations. Each pair of the geminal ethyl groups in the positions 2 or 5 of the imidazolidine ring was found to produce an additional hyperfine splitting (hfs) of about 0.2 mT in the EPR spectra of the nitroxides. The effect was attributed to the hfs constant of only one of four methylene hydrogen atoms of two geminal ethyl substituents not fully averaged by ethyl group rotation and ring puckering. In accordance with this assumption, the substitution of hydrogen atoms of CH(2) groups in 2,2,5,5-tetraethyl-substituted imidazolidine nitroxides by deuterium leads to the substantial narrowing of EPR lines which could be useful for many biochemical and biomedical applications, including pH-monitoring. W-band EPR spectra of 2,2,5,5-tetraethyl-substituted imidazolidine nitroxide and its 2,2,5,5-tetraethyl-d(8) deuterium-substituted analog measured at low temperatures demonstrated high sensitivity of their g-factors to pH, which indicates their applicability as spin labels possessing high stability.
ABSTRACT
An interaction of M(hfac)2 (M = Mn or Ni) with N-(bis(4,4,5,5-tetramethyl-3-oxido-1-oxyl-4,5-dihydro-1H-imidazol-2-yl)methylene)-2-methyl-propan-2-amine oxide (a nitronyl nitroxide diradical with the >C[double bond, length as m-dash]N(O)-tert-Bu coupler) was investigated under various conditions. It was found that prolongation of reaction time caused transformation of the initial diradical into new diradicals with the unique >C[double bond, length as m-dash]N-OH coupling unit and formation of binuclear Mn(ii) and Ni(ii) complexes, which were characterized by X-ray diffraction analysis. The resulting binuclear heterospin complexes have a complicated magnetic structure with six paramagnetic centers and a number of exchange interaction channels between them, as well as between neighboring complexes. To adequately describe the magnetic properties of these complexes, high-level ab initio calculations of their electronic structure and parameters of the spin-Hamiltonian were carried out. The accuracy of the conventional broken-symmetry density functional theory approach in the calculation of the exchange interaction parameters was also verified.
ABSTRACT
Spin-trapping experiments have shown that 9,10-anthraquinone-2-sulphonate (AQS) can be reduced enzymatically with NADPH-cytochrome P-450 reductase (FP) producing OH radicals. It has been revealed for the first time that the radical anion of AQS cannot decompose H2O2 as indicated by flash-photolysis data. From the experimental results obtained it follows that an enzyme system containing NADPH, AQS and FP produces both accumulation of H2O2 from molecular oxygen and reduction of Fe3+ to Fe2+ which decomposes H2O2 catalytically via a Fenton reaction.
Subject(s)
Anthraquinones/metabolism , Benzoquinones , Hydrogen Peroxide/metabolism , Hydroxides/metabolism , NADPH-Ferrihemoprotein Reductase/metabolism , Quinones/metabolism , Cyclic N-Oxides , Electron Spin Resonance Spectroscopy , Hydroxyl Radical , Kinetics , NADP/metabolism , Oxidation-Reduction , Oxygen/metabolism , Photolysis , Spin LabelsABSTRACT
Irradiation of N-(tyrosyl)-N'-(5-azido-2-nitrobenzoyl)-1,2-diaminoethane (I) initiates chemical reactions that lead to different products depending on the experimental conditions. All of these products are attributed to the reactions of triplet 4-nitrobenzoyl nitrene (4NBN). The reactions of triplet 4NBN with the tyrosyl residue result in the formation of two distinct products: compound II, which is unstable in aqueous solution, and the stable compound cyclo-[1-(4'-nitro-3'-benzoyl)-2-(aminotyrosyl)-N,N'-ethylenediami ne] (III). The formation of II is detected only in aerobic conditions. The unstable photoproduct II converts almost completely into compound III when its solution is concentrated. The photoproducts II and III have absorption spectra that are close to those of the photolabelled peptides. This finding is important for speculating about the chemical nature of the photomodification products of protein tyrosyl residues by the arylazide group.
Subject(s)
Cross-Linking Reagents , Tyrosine/analogs & derivatives , Tyrosine/chemistry , Magnetic Resonance Spectroscopy , Photochemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Spectrophotometry , Tyrosine/radiation effects , Ultraviolet RaysABSTRACT
The investigations were aimed at assessment of environmental pollution in one of the most industrialized regions of Ukraine - Dnepropetrovsk Region. The following types of environmental contamination were considered in the study: emissions and concentrations of 16 air pollutants; content and distribution of 15 elements in soils and plants at the polluted and unpolluted territories. The investigations were conducted at 28 urban sites and 18 rural sites of the Region during 1991-1998 years. Level and character of air, soil and plants contamination were investigated. Statistical methods were used to describe quantitatively the relationships between contents of hazardous materials in the environment. It was found that concentrations of fluoride, iron, copper, zinc, and lead in the soil and contents of fluoride, iron, nickel, cadmium, and aluminum in plants were several times higher than normal.
Subject(s)
Air Pollution/analysis , Soil Pollutants/analysis , Environmental Monitoring , Humans , Industry , Metals, Heavy/analysis , Plants , UkraineABSTRACT
The intra- and intermolecular chemistry of phenylnitrene (PhN), its singlet-triplet energy separation, and its electronic spectra are interpreted with the aid of ab initio molecular orbital theory. The key to understanding singlet PhN is the recognition that this species has an open-shell electronic structure, in contrast to the related species, phenylcarbene, which has a closed-shell electronic structure. The thermodynamics of nitrenes, benzazirines, dehydroazepines, aminyl radicals, and their hydrocarbon analogues are also discussed.
Subject(s)
Imines/chemistry , Chemical Phenomena , Chemistry, Physical , PhotolysisABSTRACT
Laser flash photolysis (LFP, Nd:YAG laser, 35 ps, 266 nm, 10 mJ or KrF excimer laser, 10 ns, 249 nm, 50 mJ) of 2-fluoro, 4-fluoro, 3,5-difluoro, 2,6-difluoro, and 2,3,4,5,6-pentafluorophenyl azides produces the corresponding singlet nitrenes. The singlet nitrenes were detected by transient absorption spectroscopy, and their spectra are characterized by sharp absorption bands with maxima in the range of 300-365 nm. The kinetics of their decay were analyzed as a function of temperature to yield observed decay rate constants, k(OBS). The observed rate constant in inert solvents is the sum of k(R) + k(ISC) where k(R) is the absolute rate constant of rearrangement of singlet nitrene to an azirine and k(ISC) is the absolute rate constant of nitrene intersystem crossing (ISC). Values of k(R) and k(ISC) were deduced after assuming that k(ISC) is independent of temperature. Barriers to cyclization of 4-fluoro-, 3,5-difluoro-, 2-fluoro-, 2,6-difluoro-, and 2,3,4,5,6-pentafluorophenylnitrene in inert solvents are 5.3 +/- 0.3, 5.5 +/- 0.3, 6.7 +/- 0.3, 8.0 +/- 1.5, and 8.8 +/- 0.4 kcal/mol, respectively. The barrier to cyclization of parent singlet phenylnitrene is 5.6 +/- 0.3 kcal/mol. All of these values are in good quantitative agreement with CASPT2 calculations of the relative barrier heights for the conversion of fluoro-substituted singlet aryl nitrenes to benzazirines (Karney, W. L. and Borden, W. T. J. Am. Chem. Soc. 1997, 119, 3347). A single ortho-fluorine substituent exerts a small but significant bystander effect on remote cyclization that is not steric in origin. The influence of two ortho-fluorine substituents on the cyclization is pronounced. In the case of the singlet 2-fluorophenylnitrene system, evidence is presented that the benzazirine is an intermediate and that the corresponding singlet nitrene and benzazirine interconvert. Ab initio calculations at different levels of theory on a series of benzazirines, their isomeric ketenimines, and the transition states converting the benzazirines to ketenimines were performed. The computational results are in good qualitative and quantitative agreement with the experimental findings.