Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Chemistry ; 29(62): e202302042, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37797189

ABSTRACT

Copper(II) silver(II) sulfate crystallizes in a monoclinic CuSO4 -related structure with P21 /n symmetry. This quasi-ternary compound features Ag(SO4 )2 2- layers, while the remaining cationic sites may be occupied either completely or partially by Cu2+ cations, corresponding to the formula of (Cux Ag1-x )[Ag(SO4 )2 ], x=0.6-1.0. CuAg(SO4 )2 is antiferromagnetic with large negative Curie-Weiss temperature of -140 K and shows characteristic ordering phenomenon at 40.4 K. Density functional theory calculations reveal that the strongest superexchange interaction is a two-dimensional antiferromagnetic coupling within Ag(SO4 )2 2- layers, with the superexchange constant J2D of -11.1 meV. This renders CuAg(SO4 )2 the rare representative of layered Ag2+ -based antiferromagnets. Magnetic coupling is facilitated by the strong mixing of Ag d(x2 -y2 ) and O 2p states. Calculations show that M2+ sites in MAg(SO4 )2 can be occupied with other similar cations such as Zn2+ , Cd2+ , Ni2+ , Co2+ , and Mg2+ .

2.
Chemistry ; 28(30): e202200712, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35352859

ABSTRACT

Pressure-induced phase transitions of MI AgII F3 perovskites (M=K, Rb, Cs) have been predicted theoretically for the first time for pressures up to 100 GPa. The sequence of phase transitions for M=K and Rb consists of a transition from orthorhombic to monoclinic and back to orthorhombic, associated with progressive bending of infinite chains of corner-sharing [AgF6 ]4- octahedra and their mutual approach through secondary Ag⋅⋅⋅F contacts. In stark contrast, only a single phase transition (tetragonal→triclinic) is predicted for CsAgF3 ; this is associated with substantial deformation of the Jahn-Teller-distorted first coordination sphere of AgII and association of the infinite [AgF6 ]4- chains into a polymeric sublattice. The phase transitions markedly decrease the coupling strength of intra-chain antiferromagnetic superexchange in MAgF3 hosts lattices.

3.
Inorg Chem ; 61(23): 8694-8702, 2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35642313

ABSTRACT

While most of the rare-earth metals readily form trihydrides, due to increased stability of the filled 4f electronic shell for Yb(II), only YbH2.67, formally corresponding to YbII(YbIIIH4)2 (or Yb3H8), remains the highest hydride of ytterbium. Utilizing the diamond anvil cell methodology and synchrotron powder X-ray diffraction, we have attempted to push this limit further via hydrogenation of metallic Yb and Yb3H8. Compression of the latter has also been investigated in a neutral pressure-transmitting medium (PTM). While the in situ heating of Yb facilitates the formation of YbH2+x hydrides, we have not observed clear qualitative differences between the systems compressed in H2 and He or Ne PTM. In all of these cases, a sequence of phase transitions occurred within ca. 13-18 GPa (P3̅1m-I4/m phase) and around 27 GPa (to the I4/mmm phase). The molecular volume of the systems compressed in H2 PTM is ca. 1.5% larger than of those compressed in inert gases, suggesting a small hydrogen uptake. Nevertheless, hydrogenation toward YbH3 is incomplete, and polyhydrides do not form up to the highest pressure studied here (ca. 75 GPa). As pointed out by electronic transport measurements, the mixed-valence Yb3H8 retains its semiconducting character up to >50 GPa, although the very low remnant activation energy of conduction (<5 meV) suggests that metallization under further compression should be achievable. Finally, we provide a theoretical description of a hypothetical stoichiometric YbH3.

4.
Phys Chem Chem Phys ; 24(26): 15705-15717, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35579107

ABSTRACT

Flat monolayers of silver(II) fluoride, which could be obtained by epitaxial deposition on an appropriate substrate, have been recently predicted to exhibit very strong antiferro-magnetic superexchange and to have large potential for ambient pressure superconductivity if doped to an optimal level. It was shown that AgF2 could become a magnetic glue-based superconductor with a critical superconducting temperature approaching 200 K at optimum doping. In the current work we calculate the optimum doping to correspond to 14% of holes per formula unit, i.e. quite similar to that for oxocuprates(II). Furthermore, using DFT calculations we show that flat [AgF2] single layers can indeed be doped to a controlled extent using a recently proposed "chemical capacitor" setup. Hole doping associated with the formation of Ag(III) proves to be difficult to achieve in the setup explored in this work as it falls at the verge of charge stability of fluoride anions and does not affect the d(x2 - y2) manifold. However, in the case of electron doping, manipulation of different factors - such as the number of dopant layers and the thickness of the separator - permits fine tuning of the doping level (and concomitantly TC) all the way from the underdoped to overdoped regime (in a similar manner to chemical doping for the Nd2CuO4 analogue).

5.
J Phys Chem A ; 126(51): 9618-9626, 2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36521028

ABSTRACT

Using quantum mechanical calculations, we examine magnetic (super)exchange interactions in hypothetical, chemically reasonable molecular coordination clusters containing fluoride-bridged late transition metals or selected lanthanides, as well as Ag(II). By referencing to analogous species comprising closed-shell Cd(II), we provide theoretical evidence that the presence of Ag(II) may modify the magnetic properties of such systems (including metal-metal superexchange) to a surprising degree, specifically both coupling sign and strength may markedly change. Remarkably, this happens in spite of the fact that the fluoride ligand is the least susceptible to spin polarization among all monoatomic ligands known in chemistry. In an extreme case of an oxo-bridged Ni(II)2 complex, the presence of Ag(II) leads to a nearly 17-fold increase of magnetic superexchange and switching from antiferro (AFM)- to ferromagnetic (FM) coupling. Ag(II)─with one hole in its d shell that may be shared with or transferred to ligands─effectively acts as spin super-polarizer, and this feature could be exploited in spintronics and diverse molecular devices.

6.
Proc Natl Acad Sci U S A ; 116(5): 1495-1500, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30651308

ABSTRACT

The parent compound of high-[Formula: see text] superconducting cuprates is a unique Mott insulator consisting of layers of spin-[Formula: see text] ions forming a square lattice and with a record high in-plane antiferromagnetic coupling. Compounds with similar characteristics have long been searched for without success. Here, we use a combination of experimental and theoretical tools to show that commercial [Formula: see text] is an excellent cuprate analog with remarkably similar electronic parameters to [Formula: see text] but larger buckling of planes. Two-magnon Raman scattering and inelastic neutron scattering reveal a superexchange constant reaching 70% of that of a typical cuprate. We argue that structures that reduce or eliminate the buckling of the [Formula: see text] planes could have an antiferromagnetic coupling that matches or surpasses the cuprates.

7.
Chemistry ; 27(17): 5536-5545, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33471421

ABSTRACT

The silver-fluorine phase diagram has been scrutinized as a function of external pressure using theoretical methods. Our results indicate that two novel stoichiometries containing Ag+ and Ag2+ cations (Ag3 F4 and Ag2 F3 ) are thermodynamically stable at ambient and low pressure. Both are computed to be magnetic semiconductors under ambient pressure conditions. For Ag2 F5 , containing both Ag2+ and Ag3+ , we find that strong 1D antiferromagnetic coupling is retained throughout the pressure-induced phase transition sequence up to 65 GPa. Our calculations show that throughout the entire pressure range of their stability the mixed-valence fluorides preserve a finite band gap at the Fermi level. We also confirm the possibility of synthesizing AgF4 as a paramagnetic compound at high pressure. Our results indicate that this compound is metallic in its thermodynamic stability region. Finally, we present general considerations on the thermodynamic stability of mixed-valence compounds of silver at high pressure.

8.
Inorg Chem ; 60(3): 1561-1570, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33464901

ABSTRACT

We report a computational survey of chemical doping of silver(II) fluoride, which has recently attracted attention as an analogue of La2CuO4-a known precursor of high-temperature superconductors. By introducing fluorine defects (vacancies or interstitial adatoms) into the crystal structure, we obtain nonstoichiometric, electron- and hole-doped polymorphs of AgF2±x. We find that the ground-state solutions show a strong tendency for localization of defects and of the associated electronic states, and the resulting doped phases exhibit insulating or semiconducting properties. Furthermore, the distribution of Ag(I)/Ag(III) sites which appear in the crystal structure points to the propensity of the AgF2 system for phase separation upon chemical doping, which is in line with observations from previous experimental attempts. Overall, our results indicate that chemical modification may not be a feasible way to achieve doping in bulk silver(II) fluoride, which is considered essential for the emergence of high-Tc superconductivity.

9.
J Chem Phys ; 154(20): 204705, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34241151

ABSTRACT

Metal oxyfluorides constitute a broad group of chemical compounds with a rich spectrum of crystal structures and properties. Surprisingly though, none of the ternary oxyfluorides contains a cation from group 11 of the periodic table. Intending to find one, we focused on the silver derivative, the Ag2OF2 system, which may be considered as the 1:1 "adduct" of AgF2 (i.e., an antiferromagnetic positive U charge transfer insulator) and AgO (i.e., a diamagnetic disproportionated negative charge transfer insulator). Here, possible crystal structures of the silver oxyfluoride were studied using evolutionary algorithms based on the density functional theory approach. We analyzed the oxidation states of silver in the low-energy structures, possible magnetic interactions, and energetic stability with respect to the available substrates. Our findings suggest that silver oxyfluoride, if obtained, may form a metastable crystal with cations in three different oxidation states of the same element. Due to the small energy difference, existence of a fully disproportionated metallic compound cannot be ruled out. Finally, we outlined a prospect for the synthesis of polytypes of interest using diverse synthetic approaches, starting from the direct fluorination of Ag2O.

10.
Angew Chem Int Ed Engl ; 60(25): 13892-13895, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-33847034

ABSTRACT

In the era of molecular devices and nanotechnology, precise control over electron-transfer processes is strongly desired. However, redox reactions are usually characterized by reaction equilibrium constants strongly departing from unity. This leads to strong favoring of either reactants or products and does not permit subtle control of transferred charge (doping). Here we propose, based on theoretical studies for periodic systems, how charge transfer between reactants could be finely manipulated in the epitaxially grown system composed of extremely strong oxidizer, reducing agent, and an inert separator-the key factor of control.

11.
Phys Chem Chem Phys ; 22(38): 21809-21815, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-32966451

ABSTRACT

AgF2 is a layered material and a correlated charge transfer insulator with an electronic structure very similar to the parent compounds of cuprate high-TC superconductors. It is also interesting as it is a powerful oxidizer. Here we present a first principles computation of its electronic properties in a slab geometry including its work function for the (010) surface (7.76 eV) which appears to be the highest among known materials with non-dipolar surfaces, and surpassing even that of fluorinated diamond (7.24 eV). We demonstrate that AgF2 will show a "broken-gap" type alignment becoming electron doped and promoting injection of holes in many wide band gap insulators if chemical reaction can be avoided. Novel junction devices involving p type and n type superconductors have been proposed. The issue of chemical reaction is discussed in connection with the possibility to create flat AgF2 monolayers achieving high-TC superconductivity. As a first step in this direction, we studied the stability and properties of an isolated AgF2 monolayer.

12.
Anal Chem ; 91(17): 11306-11315, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31387347

ABSTRACT

Nuclear magnetic resonance spectroscopy (NMR) is a versatile tool of chemical analysis allowing one to determine structures of molecules with atomic resolution. Particularly informative are two-dimensional (2D) experiments that directly identify atoms coupled by chemical bonds or a through-space interaction. Thus, NMR could potentially be powerful tool to study reactions in situ and explain their mechanisms. Unfortunately, 2D NMR is very time-consuming and thus often cannot serve as a "snapshot" technique for in situ reaction monitoring. Particularly difficult is the case of spectra, in which resonance frequencies vary in the course of reaction. This leads to resolution and sensitivity loss, often hindering the detection of transient products. In this paper we introduce a novel approach to correct such nonstationary 2D NMR signals and raise the detection limits over 10 times. We demonstrate success of its application for studying the mechanism of the reaction of AgSO4-induced synthesis of diphenylmethane-type compounds. Several reactions occur in the studied mixture of benzene and toluene, all with rather low yield and leading to compounds with similar chemical shifts. Nevertheless, with the use of a proposed 2D NMR approach we were able to describe complex mechanisms of diphenylmethane formation involving AgSO4-induced toluene deprotonation and formation of benzyl carbocation, followed by nucleophilic attacks.


Subject(s)
Benzene/chemistry , Benzhydryl Compounds/chemical synthesis , Magnetic Resonance Spectroscopy , Silver/chemistry , Sulfates/chemistry , Toluene/chemistry , Benzhydryl Compounds/chemistry
13.
Chemistry ; 25(44): 10290-10293, 2019 Aug 06.
Article in English | MEDLINE | ID: mdl-31119805

ABSTRACT

Theoretical calculations utilizing relativistic ZORA Hamiltonian point to the conceivable existence of an IrNO3 molecule in C3v geometry. This minimum is shown to correspond to genuine nonavalent iridium nitride trioxide, which is a neutral analogue of cationic [IrO4 ]+ species detected recently. Despite the presence of nitride anion, the molecule is protected by substantial barriers exceeding 200 kJ mol-1 against transformations leading, for example, to global minimum (O=)2 Ir-NO, which contains metal at a lower formal oxidation state.

14.
Chemistry ; 25(19): 4927-4930, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30681207

ABSTRACT

The use of the boron-doped diamond electrode as a sufficiently stable electrode for electrochemical measurements/synthesis in liquid anhydrous hydrogen fluoride medium is reported. Electrooxidation of silver(I) has been studied in this solvent by using classical transient electrochemical methods and impedance spectroscopy. It has been found that faradaic currents related to silver(I) oxidation and the fluorine evolution reaction are reasonably separated at the potential scale, which allows efficient electrosynthesis of AgII F2 , a powerful oxidizer. Impedance spectroscopy measurements provide insight into complex mechanism of AgF2 formation. The procedure for electrosynthesis is provided for the first time in both galvanostatic and potentiostatic condition.

15.
J Phys Chem A ; 123(3): 682-692, 2019 Jan 24.
Article in English | MEDLINE | ID: mdl-30632754

ABSTRACT

The classical, in its nature, concept of atomic or ionic radii, although profitable in many fields, is represented by an ambiguous choice of formulations. In this work, we propose a definition of atomic and ionic radii rooted in chemical principles and conceptual density functional theories. The estimation based on electron density fundamental response functions has been successfully tested. The generalized approach has been shown to be applicable to atoms in any oxidation state. The radii display good correlation with classical estimates, such as Shannon. The atomic and ionic radii obtained according to this scheme are directly comparable between different elements, without any adjustment procedures requiring fitting constants. The definition also has a clear physical interpretation, which supports understanding of size-related phenomena and trends.

16.
Chemistry ; 23(8): 1805-1813, 2017 Feb 03.
Article in English | MEDLINE | ID: mdl-27862472

ABSTRACT

When exposed to air at ambient conditions, AgSO4 slowly reacts with moisture, yielding AgSO4 ⋅H2 O. The crystal structure determination (powder data) shows that it may be described as [Ag(OH2 )2 ][Ag(SO4 )2 ], with some sulfate groups being shared between different Ag2+ cations, resembling in that way its Cu2+ analogue. [Ag(OH2 )2 ][Ag(SO4 )2 ], the first hydrate of a compound of Ag2+ , was extensively characterized using many physicochemical methods.

17.
Inorg Chem ; 56(10): 5804-5812, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28463489

ABSTRACT

The X-ray diffraction data collected up to ca. 56 GPa and the Raman spectra measured up to 74.8 GPa for AgO, or AgIAgIIIO2, which is a prototypical mixed valence (disproportionated) oxide, indicate that two consecutive phase transitions occur: the first-order phase transition occurs between 16.1 GPa and 19.7 GPa, and a second-order phase transition occurs at ca. 40 GPa. All polymorphic forms host the square planar [AgIIIO4] units typical of low-spin AgIII. The disproportionated Imma form persists at least up to 74.8 GPa, as indicated by Raman spectra. Theoretical hybrid density functional theory (DFT) calculations show that the first-order transition is phonon-driven. AgO stubbornly remains disproportionated up to at least 100 GPa-in striking contrast to its copper analogue-and the fundamental band gap of AgO is ∼0.3 eV at this pressure and is weakly pressure-dependent. Metallization of AgO is yet to be achieved.

18.
Inorg Chem ; 56(1): 224-233, 2017 Jan 03.
Article in English | MEDLINE | ID: mdl-27991784

ABSTRACT

By slow reaction between colorless AgIW2O2F9 and elemental F2 in liquid anhydrous HF, violet platelike single crystals of Ag(WOF5)2 were grown. The crystal structure of Ag(WOF5)2 consists of layers built from Ag2+ cations bridged by [WOF5]- anions and not, as previously assumed, from infinite [AgII-F]+∞ chains and [W2O2F9]- anions. A majority (97%) of the disordered AgII cations are found with square-planar coordination of F/O ligands within the same layer, and they form additional long contacts with O/F atoms originating from the neighboring layers. The remaining 3% the of Ag(II) ions are coordinated only by F atoms in a square-planar fashion. The magnetic moments of Ag2+ from the same layer are almost perfectly antiferromagnetically aligned. Weak ferromagnetic interlayer interactions cause a small tilt (∼1.5°) of the magnetic moments, resulting in canted antiferromagnetism. Because of the lowering of the symmetry of [WOF5]- in the solid state, the vibrational spectra show more bands than expected for regular C4v symmetry. The electronic spectrum of Ag(WOF5)2 is reported and analyzed.

19.
Inorg Chem ; 56(23): 14651-14661, 2017 Dec 04.
Article in English | MEDLINE | ID: mdl-29140700

ABSTRACT

A combined experimental-theoretical study of silver(I) and silver(II) fluorides under high pressure is reported. For AgI, the CsCl-type structure is stable to at least 39 GPa; the overtone of the IR-active mode is seen in the Raman spectrum. Its AgIIF2 sibling is a unique compound in many ways: it is more covalent than other known difluorides, crystallizes in a layered structure, and is enormously reactive. Using X-ray diffraction and guided by theoretical calculations (density functional theory), we have been able to elucidate crystal structures of high-pressure polymorphs of AgF2. The transition from ambient pressure to an unprecedented nanotubular structure takes place via an intermediate orthorhombic layered structure, which lacks an inversion center. The observed phase transitions are discussed within the broader framework of the fluorite → cotunnite → Ni2In series, which has been seen for other metal difluorides.

20.
Phys Chem Chem Phys ; 19(46): 30964-30983, 2017 Nov 29.
Article in English | MEDLINE | ID: mdl-28816324

ABSTRACT

In this perspective contribution, we revisit the Maximum Hardness Principle (MHP), formulated by Pearson in 1987, and an equivalent Minimum Polarizability Principle (MPP) from Chattaraj and Parr, with particular emphasis on the cases where nuclear potential acting on electrons does not remain constant, and where substantial modifications of the nuclear geometry take place (Generalized MHP, GMHP). We first bring basic concepts related to electronic hardness, and then we present an overview of important manifestations of the GMHP for molecular systems such as (i) the tendency of two free radicals to couple, (ii) reduced reactivity of noble gases, (iii) symmetry-breaking distortions related to the Jahn-Teller effect, and/or these connected with (anti)aromatic character of certain organic molecules, (iv) enhanced reactivity of excited states, (v) high-low spin transitions, etc. GMHP is an important qualitative indicator in studies of molecular isomerism and reactivity. Quantitative aspects, traditionally measured by changes of electronic plus nuclear energy, are readily explained by changes of hardness (or polarizability) of a molecular system. Several important exceptions from (G)MHP are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL