Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Bioorg Med Chem Lett ; 30(19): 127456, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32739400

ABSTRACT

The protein kinase TNK2 (ACK1) is an emerging drug target for a variety of indications, in particular for cancer where it plays a key role transmitting cell survival, growth and proliferative signals via modification of multiple downstream effectors by unique tyrosine phosphorylation events. Scaffold morphing based on our previous TNK2 inhibitor XMD8-87 identified urea 17 from which we developed the potent and selective compound 32. A co-crystal structure was obtained showing 32 interacting primarily with the main chain atoms of an alanine residue of the hinge region. Additional H-bonds exist between the urea NHs and the Thr205 and Asp270 residues.


Subject(s)
Benzodiazepinones/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/pharmacology , Animals , Benzodiazepinones/chemical synthesis , Benzodiazepinones/metabolism , Cell Line , Crystallography, X-Ray , Drug Stability , Humans , Male , Mice , Microsomes, Liver/metabolism , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein-Tyrosine Kinases/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 30(4): 126948, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31928839

ABSTRACT

The SAR of a series of benzopyrimidodiazepinone inhibitors of TNK2 was developed, starting from the potent and selective compound XMD8-87. A diverse set of anilines was introduced in an effort to improve the in vivo PK profile and minimize the risk of quinone diimine formation.


Subject(s)
Azepines/chemistry , Protein Kinase Inhibitors/chemistry , Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Azepines/metabolism , Azepines/pharmacokinetics , Cell Line, Tumor , Half-Life , Humans , Inhibitory Concentration 50 , Mice , Microsomes, Liver/metabolism , Protein Binding , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship
3.
J Org Chem ; 84(20): 13073-13091, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31524395

ABSTRACT

Substoichiometric iron mediates the thioetherification of unactivated aliphatic C-H bonds directed by resident silylperoxides. Upon exposure to a catalytic amount of iron(II) triflate, TIPS-protected peroxides bearing primary, secondary, and tertiary C-H sites undergo chemoselective thioetherification of remote C-H bonds with diaryl disulfides. The reaction demonstrates a broad substrate scope and functional group tolerance without the use of any noble metal additives. Mechanistic experiments suggest that the reaction proceeds through 1,5-H atom abstraction by a hydroxyl radical generated with iron.


Subject(s)
Ethers/chemical synthesis , Peroxides/chemistry , Sulfides/chemical synthesis , Ethers/chemistry , Molecular Structure , Sulfides/chemistry
4.
J Am Chem Soc ; 138(39): 12771-12774, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27676449

ABSTRACT

This communication describes a mild, amide-directed fluorination of benzylic, allylic, and unactivated C-H bonds mediated by iron. Upon exposure to a catalytic amount of iron(II) triflate (Fe(OTf)2), N-fluoro-2-methylbenzamides undergo chemoselective fluorine transfer to provide the corresponding fluorides in high yield. The reaction demonstrates broad substrate scope and functional group tolerance without the use of any noble metal additives. Mechanistic and computational experiments suggest that the reaction proceeds through short-lived radical intermediates with F-transfer mediated directly by iron.

5.
bioRxiv ; 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37873358

ABSTRACT

Small molecules that can induce protein degradation by inducing proximity between a desired target and an E3 ligase have the potential to greatly expand the number of proteins that can be manipulated pharmacologically. Current strategies for targeted protein degradation are mostly limited in their target scope to proteins with preexisting ligands. Alternate modalities such as molecular glues, as exemplified by the glutarimide class of ligands for the CUL4CRBN ligase, have been mostly discovered serendipitously. We recently reported a trans-labelling covalent glue mechanism which we named 'Template-assisted covalent modification', where an electrophile decorated small molecule binder of BRD4 was effectively delivered to a cysteine residue on an E3 ligase DCAF16 as a consequence of a BRD4-DCAF16 protein-protein interaction. Herein, we report our medicinal chemistry efforts to evaluate how various electrophilic modifications to the BRD4 binder, JQ1, affect DCAF16 trans-labeling and subsequent BRD4 degradation efficiency. We discovered a decent correlation between the ability of the electrophilic small molecule to induce ternary complex formation between BRD4 and DCAF16 with its ability to induce BRD4 degradation. Moreover, we show that a more solvent-exposed warhead presentation is optimal for DCAF16 recruitment and subsequent BRD4 degradation. Unlike the sensitivity of CUL4CRBN glue degraders to chemical modifications, the diversity of covalent attachments in this class of BRD4 glue degraders suggests a high tolerance and tunability for the BRD4-DCAF16 interaction. This offers a potential new avenue for a rational design of covalent glue degraders by introducing covalent warheads to known binders.

6.
bioRxiv ; 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36824856

ABSTRACT

Small molecules that induce protein-protein interactions to exert proximity-driven pharmacology such as targeted protein degradation are a powerful class of therapeutics1-3. Molecular glues are of particular interest given their favorable size and chemical properties and represent the only clinically approved degrader drugs4-6. The discovery and development of molecular glues for novel targets, however, remains challenging. Covalent strategies could in principle facilitate molecular glue discovery by stabilizing the neo-protein interfaces. Here, we present structural and mechanistic studies that define a trans-labeling covalent molecular glue mechanism, which we term "template-assisted covalent modification". We found that a novel series of BRD4 molecular glue degraders act by recruiting the CUL4DCAF16 ligase to the second bromodomain of BRD4 (BRD4BD2). BRD4BD2, in complex with DCAF16, serves as a structural template to facilitate covalent modification of DCAF16, which stabilizes the BRD4-degrader-DCAF16 ternary complex formation and facilitates BRD4 degradation. A 2.2 Å cryo-electron microscopy structure of the ternary complex demonstrates that DCAF16 and BRD4BD2 have pre-existing structural complementarity which optimally orients the reactive moiety of the degrader for DCAF16Cys58 covalent modification. Systematic mutagenesis of both DCAF16 and BRD4BD2 revealed that the loop conformation around BRD4His437, rather than specific side chains, is critical for stable interaction with DCAF16 and BD2 selectivity. Together our work establishes "template-assisted covalent modification" as a mechanism for covalent molecular glues, which opens a new path to proximity driven pharmacology.

7.
J Med Chem ; 65(23): 15627-15641, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36416208

ABSTRACT

Overexpression of PAK1, a druggable kinase, is common in several malignancies, and inhibition of PAK1 by small molecules has been shown to impede the growth and survival of such cells. Potent inhibitors of PAKs 1-3 have been described, but clinical development has been hindered by recent findings that PAK2 function is required for normal cardiovascular function in adult mice. A unique allosteric PAK1-selective inhibitor, NVS-PAK1-1, provides a potential path forward, but has modest potency. Here, we report the development of BJG-05-039, a PAK1-selective degrader consisting of NVS-PAK1-1 conjugated to lenalidomide, a recruiter of the E3 ubiquitin ligase substrate adaptor Cereblon. BJG-05-039 induced selective degradation of PAK1 and displayed enhanced anti-proliferative effects relative to its parent compound in PAK1-dependent, but not PAK2-dependent, cell lines. Our findings suggest that selective PAK1 degradation may confer more potent pharmacological effects compared with catalytic inhibition and highlight the potential advantages of PAK1-targeted degradation.


Subject(s)
Dibenzazepines , Pyrrolidines , Animals , Mice
8.
ACS Med Chem Lett ; 12(1): 30-38, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33488961

ABSTRACT

Focal adhesion kinase (FAK) is a tyrosine kinase with prominent roles in protein scaffolding, migration, angiogenesis, and anchorage-independent cell survival and is an attractive target for the development of cancer therapeutics. However, current FAK inhibitors display dual kinase inhibition and/or significant activity on several kinases. Although multitargeted activity is at times therapeutically advantageous, such behavior can also lead to toxicity and confound chemical-biology studies. We report a novel series of small molecules based on a tricyclic pyrimidothiazolodiazepinone core that displays both high potency and selectivity for FAK. Structure-activity relationship (SAR) studies explored modifications to the thiazole, diazepinone, and aniline "tail," which identified lead compound BJG-03-025. BJG-03-025 displays potent biochemical FAK inhibition (IC50 = 20 nM), excellent kinome selectivity, activity in 3D-culture breast and gastric cancer models, and favorable pharmacokinetic properties in mice. BJG-03-025 is a valuable chemical probe for evaluation of FAK-dependent biology.

9.
Cells ; 9(5)2020 04 27.
Article in English | MEDLINE | ID: mdl-32349222

ABSTRACT

Dysregulation of microtubules and tubulin homeostasis has been linked to developmental disorders, neurodegenerative diseases, and cancer. In general, both microtubule-stabilizing and destabilizing agents have been powerful tools for studies of microtubule cytoskeleton and as clinical agents in oncology. However, many cancers develop resistance to these agents, limiting their utility. We sought to address this by developing a different kind of agent: tubulin-targeted small molecule degraders. Degraders (also known as proteolysis-targeting chimeras (PROTACs)) are compounds that recruit endogenous E3 ligases to a target of interest, resulting in the target's degradation. We developed and examined several series of α- and ß-tubulin degraders, based on microtubule-destabilizing agents. Our results indicate, that although previously reported covalent tubulin binders led to tubulin degradation, in our hands, cereblon-recruiting PROTACs were not efficient. In summary, while we consider tubulin degraders to be valuable tools for studying the biology of tubulin homeostasis, it remains to be seen whether the PROTAC strategy can be applied to this target of high clinical relevance.


Subject(s)
Adaptor Proteins, Signal Transducing , Proteolysis , Tubulin , Ubiquitin-Protein Ligases , Humans , Adaptor Proteins, Signal Transducing/drug effects , Adaptor Proteins, Signal Transducing/metabolism , Cell Line, Tumor , Protein Engineering/methods , Small Molecule Libraries , Tubulin/metabolism , Tubulin/physiology , Ubiquitin-Protein Ligases/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL