ABSTRACT
RATIONALE: Donepezil is a potent, noncompetitive, reversible, clinically effective acetylcholinesterase inhibitor. The effects of this drug on healthy brains have seldom been investigated. OBJECTIVES: The primary objective of the present study was to identify possible functional connectivity markers of the effect of donepezil in healthy young adult volunteers. METHODS: The study had a double-blind, randomized, crossover design. 30 healthy adult volunteers underwent resting-state MRI scans during 15 days of donepezil or placebo treatment, in accordance with the design. RESULTS: Results showed significant differences in intrinsic functional connectivity between donepezil and placebo, mainly in the right executive control network (RECN). More specifically, we found a decrease in the connectivity of the right inferior parietal node with other RECN nodes. Analysis using the cingulate cortex and parahippocampal regions as seeds also revealed complex modulation of functional connectivity in the donepezil condition. CONCLUSIONS: In conclusion, donepezil treatment for 15 days may result in reorganization of resting-state networks, compared with placebo.
Subject(s)
Acetylcholinesterase , Magnetic Resonance Imaging , Cognition , Donepezil/pharmacology , Double-Blind Method , Healthy Volunteers , Humans , Young AdultABSTRACT
The blood oxygen level-dependent (BOLD) effect is extensively used for functional MRI (fMRI) but presents some limitations. Diffusion-weighted fMRI (DfMRI) has been proposed as a method more tightly linked to neuronal activity. This work proposes a protocol of DfMRI acquired for several b-values and diffusion directions that is compared to gradient-echo BOLD (GE-BOLD) and to repeated spin-echo BOLD (SE-BOLD, acquisitions performed with b=0s/mm2), which was also used to ensure the reproducibility of the response. A block stimulation paradigm of the primary visual system (V1) was performed in 12 healthy subjects with checkerboard alternations (2Hz frequency). DfMRI was performed at 3T with 5 b-values (b=1500, 1000, 500, 250, 0s/mm2) with TR/TE=1004/93ms, Δ/δ=45.4ms/30ms, and 6 spatial directions for diffusion measures. GE-BOLD was performed with a similar block stimulation design timing. Apparent Diffusion Coefficient (ADC)-fMRI was computed with all b-values used. An identical Z-score level was used for all fMRI modalities for the comparison of volumes of activation. ADC-fMRI and SE-BOLD fMRI activation locations were compared in a voxel-based analysis to a cytoarchitectural probability map of V1. SE-BOLD activation volumes represented only 55% of the GE-BOLD activation volumes (P<0.0001). DfMRI activation volumes averaged for all b-values acquired represented only 12% of GE-BOLD (P<0.0001) and only 22% of SE-BOLD activation volumes (P<0.005). Compared to SE-BOLD-fMRI, ADC-fMRI activations showed fewer pixels outside of V1 and a higher average probability of belonging to V1. DfMRI and ADC-fMRI acquisition at 3T could be easily post-processed with common neuro-imaging software. DfMRI and ADC-fMRI activation volumes were significantly smaller than those obtained with SE-BOLD. ADC-fMRI activations were more precisely localized in V1 than those of SE-BOLD-fMRI. This validated the increased capability of ADC-fMRI compared to BOLD to enhance the precision of localizing an fMRI activation in the cyto-architectural zone V1, thereby justifying the use of ADC-fMRI for neuro-scientific studies.