ABSTRACT
AIM: We aimed to investigate the impact of microglial activity and microglial FDG uptake on metabolic connectivity, since microglial activation states determine FDG-PET alterations. Metabolic connectivity refers to a concept of interacting metabolic brain regions and receives growing interest in approaching complex cerebral metabolic networks in neurodegenerative diseases. However, underlying sources of metabolic connectivity remain to be elucidated. MATERIALS AND METHODS: We analyzed metabolic networks measured by interregional correlation coefficients (ICCs) of FDG-PET scans in WT mice and in mice with mutations in progranulin (Grn) or triggering receptor expressed on myeloid cells 2 (Trem2) knockouts (-/-) as well as in double mutant Grn-/-/Trem2-/- mice. We selected those rodent models as they represent opposite microglial signatures with disease associated microglia in Grn-/- mice and microglia locked in a homeostatic state in Trem2-/- mice; however, both resulting in lower glucose uptake of the brain. The direct influence of microglia on metabolic networks was further determined by microglia depletion using a CSF1R inhibitor in WT mice at two different ages. Within maps of global mean scaled regional FDG uptake, 24 pre-established volumes of interest were applied and assigned to either cortical or subcortical networks. ICCs of all region pairs were calculated and z-transformed prior to group comparisons. FDG uptake of neurons, microglia, and astrocytes was determined in Grn-/- and WT mice via assessment of single cell tracer uptake (scRadiotracing). RESULTS: Microglia depletion by CSF1R inhibition resulted in a strong decrease of metabolic connectivity defined by decrease of mean cortical ICCs in WT mice at both ages studied (6-7 m; p = 0.0148, 9-10 m; p = 0.0191), when compared to vehicle-treated age-matched WT mice. Grn-/-, Trem2-/- and Grn-/-/Trem2-/- mice all displayed reduced FDG-PET signals when compared to WT mice. However, when analyzing metabolic networks, a distinct increase of ICCs was observed in Grn-/- mice when compared to WT mice in cortical (p < 0.0001) and hippocampal (p < 0.0001) networks. In contrast, Trem2-/- mice did not show significant alterations in metabolic connectivity when compared to WT. Furthermore, the increased metabolic connectivity in Grn-/- mice was completely suppressed in Grn-/-/Trem2-/- mice. Grn-/- mice exhibited a severe loss of neuronal FDG uptake (- 61%, p < 0.0001) which shifted allocation of cellular brain FDG uptake to microglia (42% in Grn-/- vs. 22% in WT). CONCLUSIONS: Presence, absence, and activation of microglia have a strong impact on metabolic connectivity of the mouse brain. Enhanced metabolic connectivity is associated with increased microglial FDG allocation.
Subject(s)
Fluorodeoxyglucose F18 , Microglia , Animals , Mice , Microglia/metabolism , Fluorodeoxyglucose F18/metabolism , Progranulins/metabolism , Brain/metabolism , Positron-Emission Tomography , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolismABSTRACT
An acute unilateral vestibulopathy leads to symptoms of vestibular tone imbalance, which gradually decrease over days to weeks due to central vestibular compensation. Animal models of acute peripheral vestibular lesions are optimally suited to investigate the mechanisms underlying this lesion-induced adaptive neuroplasticity. Previous studies applied ex vivo histochemical techniques or local in vivo electrophysiological recordings mostly in the vestibular nucleus complex to delineate the mechanisms involved. Recently, the use of imaging methods, such as positron emission tomography (PET) or magnetic resonance imaging (MRI), in vestibular animal models have opened a complementary perspective by depicting whole-brain structure and network changes of neuronal activity over time and in correlation to behaviour. Here, we review recent multimodal imaging studies in vestibular animal models with a focus on PET-based measurements of glucose metabolism, glial activation and synaptic plasticity. [18F]-FDG-PET studies indicate dynamic alterations of regional glucose metabolism in brainstem-cerebellar, thalamic, cortical sensory and motor, as well as limbic areas starting early after unilateral labyrinthectomy (UL) in the rat. Sequential whole-brain analysis of the metabolic connectome during vestibular compensation shows a significant increase of connections mostly in the contralesional hemisphere after UL, which reaches a maximum at day 3 and thereby parallels the course of vestibular recovery. Glial activation in the ipsilesional vestibular nerve and nucleus peak between days 7 and 15 after UL. Synaptic density in brainstem-cerebellar circuits decreases until 8 weeks after UL, while it increases in frontal, motor and sensory cortical areas. We finally report how pharmacological compounds modulate the functional and structural plasticity mechanisms during vestibular compensation.
Subject(s)
Vestibule, Labyrinth , Animals , Glucose/metabolism , Models, Animal , Neuronal Plasticity/physiology , Positron-Emission Tomography/methods , Rats , Vestibule, Labyrinth/metabolismABSTRACT
Unilateral damage to the inner ear results in an acute vestibular syndrome, which is compensated within days to weeks due to adaptive cerebral plasticity. This process, called central vestibular compensation (VC), involves a wide range of functional and structural mechanisms at the cellular and network level. The short-term dynamics of whole-brain functional network recruitment and recalibration during VC has not been depicted in vivo. The purpose of this study was to investigate the interplay of separate and distinct brain regions and in vivo networks in the course of VC by sequential [18F]-FDG-PET-based statistical and graph theoretical analysis with the aim of revealing the metabolic connectome before and 1, 3, 7, and 15 days post unilateral labyrinthectomy (UL) in the rat. Temporal changes in metabolic brain connectivity were determined by Pearson's correlation (|r| > 0.5, p < 0.001) of regional cerebral glucose metabolism (rCGM) in 57 segmented brain regions. Metabolic connectivity analysis was compared to univariate voxel-wise statistical analysis of rCGM over time and to behavioral scores of static and dynamic sensorimotor recovery. Univariate statistical analysis revealed an ipsilesional relative rCGM decrease (compared to baseline) and a contralesional rCGM increase in vestibular and limbic networks and an increase in bilateral cerebellar and sensorimotor networks. Quantitative analysis of the metabolic connections showed a maximal increase from baseline to day 3 post UL (interhemispheric: 2-fold, ipsilesional: 3-fold, contralesional: 12-fold) and a gradual decline until day 15 post UL, which paralleled the dynamics of vestibular symptoms. In graph theoretical analysis, an increase in connectivity occurred especially within brain regions associated with brainstem-cerebellar and thalamocortical vestibular networks and cortical sensorimotor networks. At the symptom peak (day 3 post UL), brain networks were found to be organized in large ensembles of distinct and highly connected hubs of brain regions, which separated again with progressing VC. Thus, we found rapid changes in network organization at the subcortical and cortical level and in both hemispheres, which may indicate an initial functional substitution of vestibular loss and subsequent recalibration and reorganization of sensorimotor networks during VC.
Subject(s)
Adaptation, Physiological , Brain/diagnostic imaging , Neuronal Plasticity , Vestibular Diseases/diagnostic imaging , Vestibule, Labyrinth/injuries , Animals , Arsanilic Acid/toxicity , Brain/metabolism , Brain/physiopathology , Connectome , Fluorodeoxyglucose F18 , Glucose/metabolism , Locomotion/physiology , Neural Pathways/diagnostic imaging , Neural Pathways/metabolism , Neural Pathways/physiopathology , Nystagmus, Pathologic/physiopathology , Positron-Emission Tomography , Postural Balance/physiology , Radiopharmaceuticals , Rats , Vestibular Diseases/metabolism , Vestibular Diseases/physiopathologyABSTRACT
Metabolic connectivity patterns on the basis of [18F]-FDG positron emission tomography (PET) are used to depict complex cerebral network alterations in different neurological disorders and therefore may have the potential to support diagnostic decisions. In this study, we established a novel statistical classification method taking advantage of differential time-dependent states of whole-brain metabolic connectivity following unilateral labyrinthectomy (UL) in the rat and explored its classification accuracy. The dataset consisted of repeated [18F]-FDG PET measurements at baseline and 1, 3, 7, and 15 days (= maximum of 5 classes) after UL with 17 rats per measurement day. Classification in different stages after UL was performed by determining connectivity patterns for the different classes by Pearson's correlation between uptake values in atlas-based segmented brain regions. Connections were fitted with a linear function, with which different thresholds on the correlation coefficient (r = [0.5, 0.85]) were investigated. Rats were classified by determining the congruence of their PET uptake pattern with the fitted connectivity patterns in the classes. Overall, the classification accuracy with this method was 84.3% for 3 classes, 75.0% for 4 classes, and 54.1% for 5 classes and outperformed random classification as well as machine learning classification on the same dataset. The optimal classification thresholds of the correlation coefficient and distance-to-fit were found to be |r| > 0.65 and d = 4 when using Siegel's slope estimator for fitting. This connectivity-based classification method can compete with machine learning classification and may have methodological advantages when applied to support PET-based diagnostic decisions in neurological network disorders (such as neurodegenerative syndromes).
Subject(s)
Brain/metabolism , Glucose/metabolism , Nerve Net/diagnostic imaging , Nerve Net/metabolism , Neuroimaging/methods , Positron-Emission Tomography/methods , Animals , Brain/diagnostic imaging , Fluorodeoxyglucose F18 , Male , Neuroimaging/standards , Positron-Emission Tomography/standards , Radiopharmaceuticals , Rats , Rats, Sprague-DawleyABSTRACT
BACKGROUND: Microglial activation is one hallmark of Alzheimer disease (AD) neuropathology but the impact of the regional interplay of microglia cells in the brain is poorly understood. We hypothesized that microglial activation is regionally synchronized in the healthy brain but experiences regional desynchronization with ongoing neurodegenerative disease. We addressed the existence of a microglia connectome and investigated microglial desynchronization as an AD biomarker. METHODS: To validate the concept, we performed microglia depletion in mice to test whether interregional correlation coefficients (ICCs) of 18 kDa translocator protein (TSPO)-PET change when microglia are cleared. Next, we evaluated the influence of dysfunctional microglia and AD pathophysiology on TSPO-PET ICCs in the mouse brain, followed by translation to a human AD-continuum dataset. We correlated a personalized microglia desynchronization index with cognitive performance. Finally, we performed single-cell radiotracing (scRadiotracing) in mice to ensure the microglial source of the measured desynchronization. RESULTS: Microglia-depleted mice showed a strong ICC reduction in all brain compartments, indicating microglia-specific desynchronization. AD mouse models demonstrated significant reductions of microglial synchronicity, associated with increasing variability of cellular radiotracer uptake in pathologically altered brain regions. Humans within the AD-continuum indicated a stage-depended reduction of microglia synchronicity associated with cognitive decline. scRadiotracing in mice showed that the increased TSPO signal was attributed to microglia. CONCLUSION: Using TSPO-PET imaging of mice with depleted microglia and scRadiotracing in an amyloid model, we provide first evidence that a microglia connectome can be assessed in the mouse brain. Microglia synchronicity is closely associated with cognitive decline in AD and could serve as an independent personalized biomarker for disease progression.
Subject(s)
Alzheimer Disease , Brain , Cognitive Dysfunction , Microglia , Animals , Microglia/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mice , Cognitive Dysfunction/metabolism , Humans , Brain/metabolism , Brain/pathology , Disease Models, Animal , Positron-Emission Tomography , Receptors, GABA/metabolism , Male , Mice, Transgenic , Connectome/methods , FemaleABSTRACT
Low-intensity noisy galvanic vestibular stimulation (nGVS) can improve static and dynamic postural deficits in patients with bilateral vestibular loss (BVL). In this study, we aimed to explore the neurophysiological and neuroanatomical substrates underlying nGVS treatment effects in a rat model of BVL. Regional brain activation patterns and behavioral responses to a repeated 30 min nGVS treatment in comparison to sham stimulation were investigated by serial whole-brain 18F-FDG-PET measurements and quantitative locomotor assessments before and at nine consecutive time points up to 60 days after the chemical bilateral labyrinthectomy (BL). The 18F-FDG-PET revealed a broad nGVS-induced modulation on regional brain activation patterns encompassing biologically plausible brain networks in the brainstem, cerebellum, multisensory cortex, and basal ganglia during the entire observation period post-BL. nGVS broadly reversed brain activity adaptions occurring in the natural course post-BL. The parallel behavioral locomotor assessment demonstrated a beneficial treatment effect of nGVS on sensory-ataxic gait alterations, particularly in the early stage of post-BL recovery. Stimulation-induced locomotor improvements were finally linked to nGVS brain activity responses in the brainstem, hemispheric motor, and limbic networks. In conclusion, combined 18F-FDG-PET and locomotor analysis discloses the potential neurophysiological and neuroanatomical substrates that mediate previously observed therapeutic nGVS effects on postural deficits in patients with BVL.
Subject(s)
Bilateral Vestibulopathy , Vestibule, Labyrinth , Humans , Animals , Rats , Bilateral Vestibulopathy/therapy , Fluorodeoxyglucose F18 , Vestibule, Labyrinth/physiology , Postural Balance/physiology , Electric Stimulation , Brain/diagnostic imagingABSTRACT
Neuronal lesions trigger mechanisms of structural and functional neuroplasticity, which can support recovery. However, the temporal and spatial appearance of structure-function changes and their interrelation remain unclear. The current study aimed to directly compare serial whole-brain in vivo measurements of functional plasticity (by [18F]FDG-PET) and structural synaptic plasticity (by [18F]UCB-H-PET) before and after bilateral labyrinthectomy in rats and investigate the effect of locomotor training. Complex structure-function changes were found after bilateral labyrinthectomy: in brainstem-cerebellar circuits, regional cerebral glucose metabolism (rCGM) decreased early, followed by reduced synaptic density. In the thalamus, increased [18F]UCB-H binding preceded a higher rCGM uptake. In frontal-basal ganglia loops, an increase in synaptic density was paralleled by a decrease in rCGM. In the group with locomotor training, thalamic rCGM and [18F]UCB-H binding increased following bilateral labyrinthectomy compared to the no training group. Rats with training had considerably fewer body rotations. In conclusion, combined [18F]FDG/[18F]UCB-H dual tracer imaging reveals that adaptive neuroplasticity after bilateral vestibular loss is not a uniform process but is composed of complex spatial and temporal patterns of structure-function coupling in networks for vestibular, multisensory, and motor control, which can be modulated by early physical training.
Subject(s)
Bilateral Vestibulopathy , Fluorodeoxyglucose F18 , Animals , Brain/metabolism , Fluorodeoxyglucose F18/metabolism , Neuronal Plasticity , Positron-Emission Tomography/methods , RatsABSTRACT
The differential impact of complete and incomplete bilateral vestibulopathy (BVP) on spatial orientation, visual exploration, and navigation-induced brain network activations is still under debate. In this study, 14 BVP patients (6 complete, 8 incomplete) and 14 age-matched healthy controls performed a navigation task requiring them to retrace familiar routes and recombine novel routes to find five items in real space. [18F]-fluorodeoxyglucose-PET was used to determine navigation-induced brain activations. Participants wore a gaze-controlled, head-fixed camera that recorded their visual exploration behaviour. Patients performed worse, when recombining novel routes (p < 0.001), whereas retracing of familiar routes was normal (p = 0.82). These deficits correlated with the severity of BVP. Patients exhibited higher gait fluctuations, spent less time at crossroads, and used a possible shortcut less often (p < 0.05). The right hippocampus and entorhinal cortex were less active and the bilateral parahippocampal place area more active during navigation in patients. Complete BVP showed reduced activations in the pontine brainstem, anterior thalamus, posterior insular, and retrosplenial cortex compared to incomplete BVP. The navigation-induced brain activation pattern in BVP is compatible with deficits in creating a mental representation of a novel environment. Residual vestibular function allows recruitment of brain areas involved in head direction signalling to support navigation.