ABSTRACT
DNA origami nanostructures are a powerful tool in biomedicine and can be used to combat drug-resistant bacterial infections. However, the effect of unmodified DNA origami nanostructures on bacteria is yet to be elucidated. With the aim to obtain a better understanding of this phenomenon, the effect of three DNA origami shapes, i.e., DNA origami triangles, six-helix bundles (6HBs), and 24-helix bundles (24HBs), on the growth of Gram-negative Escherichia coli and Gram-positive Bacillus subtilis is investigated. The results reveal that while triangles and 24HBs can be used as a source of nutrients by E. coli and thereby promote population growth, their effect is much smaller than that of genomic single- and double-stranded DNA. However, no effect on E. coli population growth is observed for the 6HBs. On the other hand, B. subtilis does not show any significant changes in population growth when cultured with the different DNA origami shapes or genomic DNA. The detailed effect of DNA origami nanostructures on bacterial growth thus depends on the competence signals and uptake mechanism of each bacterial species, as well as the DNA origami shape. This should be considered in the development of antimicrobial DNA origami nanostructures.
Subject(s)
Escherichia coli , Nanostructures , Nucleic Acid Conformation , Nanostructures/chemistry , DNA/chemistry , Biological Transport , Nanotechnology/methodsABSTRACT
DNA origami nanostructures (DONs) are able to scavenge reactive oxygen species (ROS) and their scavenging efficiency toward ROS radicals was shown to be comparable to that of genomic DNA. Herein, we demonstrate that DONs are highly efficient singlet oxygen quenchers outperforming double-stranded (ds) DNA by several orders of magnitude. To this end, a ROS mixture rich in singlet oxygen is generated by light irradiation of the photosensitizer methylene blue and its cytotoxic effect on Escherichia coli cells is quantified in the presence and absence of DONs. DONs are found to be vastly superior to dsDNA in protecting the bacteria from ROS-induced damage and even surpass established ROS scavengers. At a concentration of 15â nM, DONs are about 50 000 times more efficient ROS scavengers than dsDNA at an equivalent concentration. This is attributed to the dominant role of singlet oxygen, which has a long diffusion length and reacts specifically with guanine. The dense packing of the available guanines into the small volume of the DON increases the overall quenching probability compared to a linear dsDNA with the same number of base pairs. DONs thus have great potential to alleviate oxidative stress caused by singlet oxygen in diverse therapeutic settings.
Subject(s)
DNA , Escherichia coli , Methylene Blue , Nanostructures , Reactive Oxygen Species , Singlet Oxygen , Singlet Oxygen/chemistry , DNA/chemistry , Nanostructures/chemistry , Escherichia coli/chemistry , Methylene Blue/chemistry , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/chemistry , Photosensitizing Agents/chemistry , Oxidative Stress , Free Radical Scavengers/chemistryABSTRACT
Bacterial colonization and biofilm formation on abiotic surfaces are initiated by the adhesion of peptides and proteins. Understanding the adhesion of such peptides and proteins at a molecular level thus represents an important step toward controlling and suppressing biofilm formation on technological and medical materials. This study investigates the molecular adhesion of a pilus-derived peptide that facilitates biofilm formation of Pseudomonas aeruginosa, a multidrug-resistant opportunistic pathogen frequently encountered in healthcare settings. Single-molecule force spectroscopy (SMFS) was performed on chemically etched ZnO 11 2 â¾ 0 ${\left(11\bar{2}0\right)}$ surfaces to gather insights about peptide adsorption force and its kinetics. Metal-free click chemistry for the fabrication of peptide-terminated SMFS cantilevers was performed on amine-terminated gold cantilevers and verified by X-ray photoelectron spectroscopy (XPS) and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). Atomic force microscopy (AFM) and XPS analyses reveal stable topographies and surface chemistries of the substrates that are not affected by SMFS. Rupture events described by the worm-like chain model (WLC) up to 600â pN were detected for the non-polar ZnO surfaces. The dissociation barrier energy at zero force ΔG(0), the transition state distance xb and bound-unbound dissociation rate at zero force koff (0) for the single crystalline substrate indicate that coordination and hydrogen bonds dominate the peptide/surface interaction.
Subject(s)
Bacterial Adhesion , Zinc Oxide , Pseudomonas aeruginosa , Peptides , Photoelectron Spectroscopy , Microscopy, Atomic Force , Biofilms , Surface PropertiesABSTRACT
The stability of DNA origami nanostructures in aqueous media is closely tied to the presence of cations that screen electrostatic inter-helix repulsion. Here, the thermal melting behavior of different DNA origami nanostructures is investigated in dependence on Mg2+ concentration and compared to calculated ensemble melting temperatures of the staple strands used in DNA origami folding. Strong deviations of the measured DNA origami melting temperatures from the calculated ones are observed, in particular at high ionic strength where the melting temperature saturates and becomes independent of ionic strength. The degree of deviation between the measured and calculated melting temperatures further depends on the superstructure and in particular the mechanical properties of the DNA origami nanostructures. This indicates that thermal stability of a given DNA origami design at high ionic strength is governed predominantly not by electrostatic inter-helix repulsion but mostly by mechanical strain.
Subject(s)
Nanostructures , Nucleic Acid Conformation , Nanostructures/chemistry , DNA/chemistry , Temperature , Cations , Nanotechnology , Microscopy, Atomic ForceABSTRACT
The influence of nanoscale surface topography on protein adsorption is highly important for numerous applications in medicine and technology. Herein, ferritin adsorption at flat and nanofaceted, single-crystalline Al2O3 surfaces is investigated using atomic force microscopy and X-ray photoelectron spectroscopy. The nanofaceted surfaces are generated by the thermal annealing of Al2O3 wafers at temperatures above 1000 °C, which leads to the formation of faceted saw-tooth-like surface topographies with periodicities of about 160 nm and amplitudes of about 15 nm. Ferritin adsorption at these nanofaceted surfaces is notably suppressed compared to the flat surface at a concentration of 10 mg/mL, which is attributed to lower adsorption affinities of the newly formed facets. Consequently, adsorption is restricted mostly to the pattern grooves, where the proteins can maximize their contact area with the surface. However, this effect depends on the protein concentration, with an inverse trend being observed at 30 mg/mL. Furthermore, different ferritin adsorption behavior is observed at topographically similar nanofacet patterns fabricated at different annealing temperatures and attributed to different step and kink densities. These results demonstrate that while protein adsorption at solid surfaces can be notably affected by nanofacet patterns, fine-tuning protein adsorption in this way requires the precise control of facet properties.
Subject(s)
Ferritins , Medicine , Adsorption , Microscopy, Atomic Force , Photoelectron SpectroscopyABSTRACT
This article presents the potential-dependent adsorption of two proteins, bovine serum albumin (BSA) and lysozyme (LYZ), on Ti6Al4V alloy at pH 7.4 and 37 °C. The adsorption process was studied on an electropolished alloy under cathodic and anodic overpotentials, compared to the open circuit potential (OCP). To analyze the adsorption process, various complementary interface analytical techniques were employed, including PM-IRRAS (polarization-modulation infrared reflection-absorption spectroscopy), AFM (atomic force microscopy), XPS (X-ray photoelectron spectroscopy), and E-QCM (electrochemical quartz crystal microbalance) measurements. The polarization experiments were conducted within a potential range where charging of the electric double layer dominates, and Faradaic currents can be disregarded. The findings highlight the significant influence of the interfacial charge distribution on the adsorption of BSA and LYZ onto the alloy surface. Furthermore, electrochemical analysis of the protein layers formed under applied overpotentials demonstrated improved corrosion protection properties. These studies provide valuable insights into protein adsorption on titanium alloys under physiological conditions, characterized by varying potentials of the passive alloy.
Subject(s)
Alloys , Titanium , Alloys/chemistry , Adsorption , Titanium/chemistry , Serum Albumin, Bovine/chemistry , Electrodes , Surface PropertiesABSTRACT
Multiprotein adsorption from complex body fluids represents a highly important and complicated phenomenon in medicine. In this work, multiprotein adsorption from diluted human serum at gold and oxidized iron surfaces is investigated at different serum concentrations and pH values. Adsorption-induced changes in surface topography and the total amount of adsorbed proteins are quantified by atomic force microscopy (AFM) and polarization-modulation infrared reflection absorption spectroscopy (PM-IRRAS), respectively. For both surfaces, stronger protein adsorption is observed at pH 6 compared to pH 7 and pH 8. PM-IRRAS furthermore provides some qualitative insights into the pH-dependent alterations in the composition of the adsorbed multiprotein films. Changes in the amide II/amide I band area ratio and in particular side-chain IR absorption suggest that the increased adsorption at pH 6 is accompanied by a change in protein film composition. Presumably, this is mostly driven by the adsorption of human serum albumin, which at pH 6 adsorbs more readily and thereby replaces other proteins with lower surface affinities in the resulting multiprotein film.
Subject(s)
Amides , Gold , Humans , Adsorption , Microscopy, Atomic Force , Spectrophotometry, Infrared , IronABSTRACT
The internal design of DNA nanostructures defines how they behave in different environmental conditions, such as endonuclease-rich or low-Mg2+ solutions. Notably, the inter-helical crossovers that form the core of such DNA objects have a major impact on their mechanical properties and stability. Importantly, crossover design can be used to optimize DNA nanostructures for target applications, especially when developing them for biomedical environments. To elucidate this, two otherwise identical DNA origami designs are presented that have a different number of staple crossovers between neighboring helices, spaced at 42- and 21- basepair (bp) intervals, respectively. The behavior of these structures is then compared in various buffer conditions, as well as when they are exposed to enzymatic digestion by DNase I. The results show that an increased number of crossovers significantly improves the nuclease resistance of the DNA origami by making it less accessible to digestion enzymes but simultaneously lowers its stability under Mg2+ -free conditions by reducing the malleability of the structures. Therefore, these results represent an important step toward rational, application-specific DNA nanostructure design.
Subject(s)
DNA , Nanostructures , Cross-Over Studies , DNA/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Nucleic Acid ConformationABSTRACT
Bacterial colonization of abiotic surfaces such as those of medical implants, membrane filters, and everyday household items is a process of tremendous importance for public health. Bacteria use adhesive cell surface structures called adhesins to establish contact with abiotic surfaces. Among them, protein filaments called type IV pili are particularly important and found in many Gram-negative pathogens such as Pseudomonas aeruginosa. Understanding the interaction of such adhesin proteins with different abiotic surfaces at the molecular level thus represents a fundamental prerequisite for impeding bacterial colonization and preventing the spread of infectious diseases. In this work, we investigate the interaction of a synthetic adhesin-like peptide, PAK128-144ox, derived from the type IV pilus of P. aeruginosa with hydrophilic and hydrophobic self-assembled monolayers (SAMs). Using a combination of molecular dynamics (MD) simulations, quartz crystal microbalance with dissipation monitoring (QCM-D), and spectroscopic investigations, we find that PAK128-144ox has a higher affinity for hydrophobic than for hydrophilic surfaces. Additionally, PAK128-144ox adsorption on the hydrophobic SAM is furthermore accompanied by a strong increase in α-helix content. Our results show a clear influence of surface hydrophobicity and further indicate that PAK128-144ox adsorption on the hydrophobic surface is enthalpically favored, while on the hydrophilic surface, entropic contributions are more significant. However, our spectroscopic investigations also suggest aggregation of the peptide under the employed experimental conditions, which is not considered in the MD simulations and should be addressed in more detail in future studies.
Subject(s)
Fimbriae, Bacterial , Peptides , Adsorption , Hydrophobic and Hydrophilic Interactions , Proteins , Pseudomonas aeruginosa , Surface PropertiesABSTRACT
Guanidinium (Gdm) undergoes interactions with both hydrophilic and hydrophobic groups and, thus, is a highly potent denaturant of biomolecular structure. However, our molecular understanding of the interaction of Gdm with proteins and DNA is still rather limited. Here, we investigated the denaturation of DNA origami nanostructures by three Gdm salts, i.e., guanidinium chloride (GdmCl), guanidinium sulfate (Gdm2SO4), and guanidinium thiocyanate (GdmSCN), at different temperatures and in dependence of incubation time. Using DNA origami nanostructures as sensors that translate small molecular transitions into nanostructural changes, the denaturing effects of the Gdm salts were directly visualized by atomic force microscopy. GdmSCN was the most potent DNA denaturant, which caused complete DNA origami denaturation at 50 °C already at a concentration of 2 M. Under such harsh conditions, denaturation occurred within the first 15 min of Gdm exposure, whereas much slower kinetics were observed for the more weakly denaturing salt Gdm2SO4 at 25 °C. Lastly, we observed a novel non-monotonous temperature dependence of DNA origami denaturation in Gdm2SO4 with the fraction of intact nanostructures having an intermediate minimum at about 40 °C. Our results, thus, provide further insights into the highly complex Gdm-DNA interaction and underscore the importance of the counteranion species.
Subject(s)
Salts , Sulfates , DNA/chemistry , Guanidine/chemistry , Guanidines , Protein Denaturation , Sulfates/chemistry , ThiocyanatesABSTRACT
DNA origami technology enables the folding of DNA strands into complex nanoscale shapes whose properties and interactions with molecular species often deviate significantly from that of genomic DNA. Here, we investigate the salting-out of different DNA origami shapes by the kosmotropic salt ammonium sulfate that is routinely employed in protein precipitation. We find that centrifugation in the presence of 3 M ammonium sulfate results in notable precipitation of DNA origami nanostructures but not of double-stranded genomic DNA. The precipitated DNA origami nanostructures can be resuspended in ammonium sulfate-free buffer without apparent formation of aggregates or loss of structural integrity. Even though quasi-1D six-helix bundle DNA origami are slightly less susceptible toward salting-out than more compact DNA origami triangles and 24-helix bundles, precipitation and recovery yields appear to be mostly independent of DNA origami shape and superstructure. Exploiting the specificity of ammonium sulfate salting-out for DNA origami nanostructures, we further apply this method to separate DNA origami triangles from genomic DNA fragments in a complex mixture. Our results thus demonstrate the possibility of concentrating and purifying DNA origami nanostructures by ammonium sulfate-induced salting-out.
Subject(s)
Nanostructures , Ammonium Sulfate , DNA/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Nucleic Acid Conformation , Sodium ChlorideABSTRACT
The surface-assisted hierarchical assembly of DNA origami nanostructures is a promising route to fabricate regular nanoscale lattices. In this work, the scalability of this approach is explored and the formation of a homogeneous polycrystalline DNA origami lattice at the mica-electrolyte interface over a total surface area of 18.75â cm2 is demonstrated. The topological analysis of more than 50 individual AFM images recorded at random locations over the sample surface showed only minuscule and random variations in the quality and order of the assembled lattice. The analysis of more than 450 fluorescence microscopy images of a quantum dot-decorated DNA origami lattice further revealed a very homogeneous surface coverage over cm2 areas with only minor boundary effects at the substrate edges. At total DNA costs of â 0.12 per cm2 , this large-scale nanopatterning technique holds great promise for the fabrication of functional surfaces.
Subject(s)
Nanostructures , Nanotechnology , DNA , Microscopy, Atomic Force , Nucleic Acid ConformationABSTRACT
The natural blood protein fibrinogen is a highly potent precursor for the production of various biomaterials due to its supreme biocompatibility and cell interaction. To gain actual materials from fibrinogen, the protein needs to undergo fibrillogenesis, which is mostly triggered via enzymatic processing to fibrin, electrospinning, or drying processes. All of those techniques, however, strongly limit the available structures or the applicability of the material. To overcome the current issues of fibrin(ogen) as material, we herein present a highly feasible, quick, and inexpensive technique for self-assembly of fibrinogen in solution into defined, nanofibrous three-dimensional (3D) patterns. Upon interaction with specific anions in controlled environments, stable and flexible hydrogel-like structures are formed without any further processing. Moreover, the material can be converted into highly porous and elastic aerogels by lyophilization. Both of these material classes have never been described before from native fibrinogen. The observed phenomenon also represents the first enzyme-free process of fibrillogenesis from fibrinogen with significant yield in solution. The produced hydrogels and aerogels were investigated via electron microscopy, IR spectroscopy, and fluorescence spectroscopy, which also confirms the native state of the protein. Additionally, their mechanical properties were compared with actual fibrin and unstructured fibrinogen. The structural features show a striking analogy to actual fibrin, both as hydro- and aerogel. This renders the new material a highly promising alternative for fibrin in biomaterial applications. A much faster initiation of fiber formation, exclusion of possible thrombin residuals, and low-cost reagents are great advantages.
Subject(s)
Fibrin , Hemostatics , Biocompatible Materials , Fibrinogen , ThrombinABSTRACT
The effects that solid-liquid interfaces exert on the aggregation of proteins and peptides are of high relevance for various fields of basic and applied research, ranging from molecular biology and biomedicine to nanotechnology. While the influence of surface chemistry has received a lot of attention in this context, the role of surface topography has mostly been neglected so far. In this work, therefore, we investigate the aggregation of the type 2 diabetes-associated peptide hormone hIAPP in contact with flat and nanopatterned silicon oxide surfaces. The nanopatterned surfaces are produced by ion beam irradiation, resulting in well-defined anisotropic ripple patterns with heights and periodicities of about 1.5 and 30 nm, respectively. Using time-lapse atomic force microscopy, the morphology of the hIAPP aggregates is characterized quantitatively. Aggregation results in both amorphous aggregates and amyloid fibrils, with the presence of the nanopatterns leading to retarded fibrillization and stronger amorphous aggregation. This is attributed to structural differences in the amorphous aggregates formed at the nanopatterned surface, which result in a lower propensity for nucleating amyloid fibrillization. Our results demonstrate that nanoscale surface topography may modulate peptide and protein aggregation pathways in complex and intricate ways.
Subject(s)
Amylin Receptor Agonists/chemistry , Islet Amyloid Polypeptide/chemistry , Nanostructures/chemistry , Protein Aggregates , Humans , Models, Molecular , Surface PropertiesABSTRACT
DNA origami nanostructures (DONs) are promising substrates for the single-molecule investigation of biomolecular reactions and dynamics by in situ atomic force microscopy (AFM). For this, they are typically immobilized on mica substrates by adding millimolar concentrations of Mg2+ ions to the sample solution, which enable the adsorption of the negatively charged DONs at the like-charged mica surface. These non-physiological Mg2+ concentrations, however, present a serious limitation in such experiments as they may interfere with the reactions and processes under investigation. Therefore, we here evaluate three approaches to efficiently immobilize DONs at mica surfaces under essentially Mg2+-free conditions. These approaches rely on the pre-adsorption of different multivalent cations, i.e., Ni2+, poly-l-lysine (PLL), and spermidine (Spdn). DON adsorption is studied in phosphate-buffered saline (PBS) and pure water. In general, Ni2+ shows the worst performance with heavily deformed DONs. For 2D DON triangles, adsorption at PLL- and in particular Spdn-modified mica may outperform even Mg2+-mediated adsorption in terms of surface coverage, depending on the employed solution. For 3D six-helix bundles, less pronounced differences between the individual strategies are observed. Our results provide some general guidance for the immobilization of DONs at mica surfaces under Mg2+-free conditions and may aid future in situ AFM studies.
Subject(s)
Aluminum Silicates/chemistry , DNA/chemistry , Magnesium/chemistry , Microscopy, Atomic Force , Nanostructures/chemistry , Nucleic Acid Conformation , Adsorption , Nickel/chemistry , Polyelectrolytes/chemistry , Polylysine/chemistry , Spermidine/chemistry , Surface Properties , Water/chemistryABSTRACT
Although DNA origami nanostructures have found their way into numerous fields of fundamental and applied research, they often suffer from rather limited stability when subjected to environments that differ from the employed assembly conditions, that is, suspended in Mg2+ -containing buffer at moderate temperatures. Here, means for efficient cryopreservation of 2D and 3D DNA origami nanostructures and, in particular, the effect of repeated freezing and thawing cycles are investigated. It is found that, while the 2D DNA origami nanostructures maintain their structural integrity over at least 32 freeze-thaw cycles, ice crystal formation makes the DNA origami gradually more sensitive toward harsh sample treatment conditions. Whereas no freeze damage could be detected in 3D DNA origami nanostructures subjected to 32 freeze-thaw cycles, 1000 freeze-thaw cycles result in significant fragmentation. The cryoprotectants glycerol and trehalose are found to efficiently protect the DNA origami nanostructures against freeze damage at concentrations between 0.2 × 10-3 and 200 × 10-3 m and without any negative effects on DNA origami shape. This work thus provides a basis for the long-term storage of DNA origami nanostructures, which is an important prerequisite for various technological and medical applications.
Subject(s)
Cryopreservation , DNA , Nanostructures , Cryopreservation/methods , Cryoprotective Agents/pharmacology , DNA/chemistry , DNA/drug effects , DNA Damage , Freezing , Glycerol/pharmacology , Nanostructures/chemistry , Trehalose/pharmacologyABSTRACT
The presented studies correlate the surface chemistry of electrochemically oxidized TiAlN hard coatings with the desorption forces of poly(acrylic acid) (PAA) at the electrolyte/oxide/TiAlN interface. Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) was performed at different pH values to investigate surface chemistry-induced changes in desorption force. The chemical state was characterized by X-ray photoemission spectroscopy and electrochemical analysis. The results show that the desorption forces continuously decrease with increasing pH in the range from pH 5 to 9. The comparison of the desorption forces on rf-sputtered titanium dioxide and aluminum oxide films shows that the electrochemically oxidized surface of TiAlN, in agreement with the revealed surface composition, shows interfacial adhesive properties in contact with PAA and water that resemble a pure titanium oxide layer. Load rate-dependent measurements were performed to analyze both the free energy barrier and the transition state distance.
ABSTRACT
Immobile Holliday junctions represent not only the most fundamental building block of structural DNA nanotechnology but are also of tremendous importance for the in vitro investigation of genetic recombination and epigenetics. Here, we present a detailed study on the room-temperature assembly of immobile Holliday junctions with the help of the single-strand annealing protein Redß. Individual DNA single strands are initially coated with protein monomers and subsequently hybridized to form a rigid blunt-ended four-arm junction. We investigate the efficiency of this approach for different DNA/protein ratios, as well as for different DNA sequence lengths. Furthermore, we also evaluate the potential of Redß to anneal sticky-end modified Holliday junctions into hierarchical assemblies. We demonstrate the Redß-mediated annealing of Holliday junction dimers, multimers, and extended networks several microns in size. While these hybrid DNA-protein nanostructures may find applications in the crystallization of DNA-protein complexes, our work shows the great potential of Redß to aid in the synthesis of functional DNA nanostructures under mild reaction conditions.
Subject(s)
DNA, Cruciform/chemistry , DNA, Single-Stranded/chemistry , DNA-Binding Proteins/chemistry , DNA/chemistry , TemperatureABSTRACT
High-speed atomic force microscopy (HS-AFM) is widely employed in the investigation of dynamic biomolecular processes at a single-molecule level. However, it remains an open and somewhat controversial question, how these processes are affected by the rapidly scanned AFM tip. While tip effects are commonly believed to be of minor importance in strongly binding systems, weaker interactions may significantly be disturbed. Herein, we quantitatively assess the role of tip effects in a strongly binding system using a DNA origami-based single-molecule assay. Despite its femtomolar dissociation constant, we find that HS-AFM imaging can disrupt monodentate binding of streptavidin (SAv) to biotin (Bt) even under gentle scanning conditions. To a lesser extent, this is also observed for the much stronger bidentate SAv-Bt complex. The presented DNA origami-based assay can be universally employed to quantify tip effects in strongly and weakly binding systems and to optimize the experimental settings for their reliable HS-AFM imaging.
Subject(s)
DNA/metabolism , Microscopy, Atomic Force/methods , Single Molecule Imaging/methods , Bacterial Proteins/chemistry , Biotin/analogs & derivatives , Biotin/chemistry , DNA/chemistry , Ligands , Nanostructures/chemistryABSTRACT
DNA nanostructures have emerged as intriguing tools for numerous biomedical applications. However, in many of those applications and most notably in drug delivery, their stability and function may be compromised by the biological media. A particularly important issue for medical applications is their interaction with proteins such as endonucleases, which may degrade the well-defined nanoscale shapes. Herein, fundamental insights into this interaction are provided by monitoring DNaseâ I digestion of four structurally distinct DNA origami nanostructures (DONs) in real time and at a single-structure level by using high-speed atomic force microscopy. The effect of the solid-liquid interface on DON digestion is also assessed by comparison with experiments in bulk solution. It is shown that DON digestion is strongly dependent on its superstructure and flexibility and on the local topology of the individual structure.