Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters

Publication year range
1.
Molecules ; 29(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38893580

ABSTRACT

In the present work, we investigate the potential of modified barium titanate (BaTiO3), an inexpensive perovskite oxide derived from earth-abundant precursors, for developing efficient water oxidation electrocatalysts using first-principles calculations. Based on our calculations, Rh doping is a way of making BaTiO3 absorb more light and have less overpotential needed for water to oxidize. It has been shown that a TiO2-terminated BaTiO3 (001) surface is more promising from the point of view of its use as a catalyst. Rh doping expands the spectrum of absorbed light to the entire visible range. The aqueous environment significantly affects the ability of Rh-doped BaTiO3 to absorb solar radiation. After Ti→Rh replacement, the doping ion can take over part of the electron density from neighboring oxygen ions. As a result, during the water oxidation reaction, rhodium ions can be in an intermediate oxidation state between 3+ and 4+. This affects the adsorption energy of reaction intermediates on the catalyst's surface, reducing the overpotential value.

2.
Phys Chem Chem Phys ; 23(32): 17493-17501, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34355713

ABSTRACT

Cobalt based perovskites have great potential for numerous applications. Contrary to a generally assumed hexagonal space group (SG P63/mmc) model as the ground state of BaCoO3 (BCO), our hybrid DFT calculations with B1WC density functional and the symmetry group-subgroup derived crystal structure model support the ground state of BCO to be indeed monoclinic, in agreement with recent experimental predictions [Chin et al., Phys. Rev. B, 2019, 100, 205139]. We found for the monoclinic BCO that the C-type anti-ferromagnetic low-spin (AFM LS) state (SG P2/c) is energetically only slightly more preferential at 0 K than the ferromagnetic (FM) LS state (SG C2/c). In turn, these monoclinic structures are energetically more favourable than the hexagonal ones, due to slight z-axis tilting. The analysis of density of states (DOS) and crystal orbital overlap population (COOP) shows a significant (almost 2 eV) separation between occupied and empty t2g states (in the spin-down channel and corresponding anti-bonding states) induced by the z-axis tilting.

3.
Phys Chem Chem Phys ; 22(21): 11861-11870, 2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32432269

ABSTRACT

Sodium Super Ionic Conductor (NASICON) structured phosphate framework compounds represent a very attractive class of materials for their use as Na-ion battery electrodes. A series of NASICON-structured NaxTi2(PO4)3 compounds corresponding to varying degrees of sodiation (x = 1-4) have been investigated using high-level hybrid density functional theory calculations using the Linear Combination of Atomic Orbitals and Gaussian-type basis set formalism together with hybrid B1WC and HSE06 exchange-correlation functionals. Using primitive cells of NaxTi2(PO4)3 compounds with different stoichiometry, sodium sublattice structure and titanium oxidation states are constructed and analyzed using group theoretical symmetry considerations. The existence of mixed titanium oxidation states for x = 4 (Ti2+/Ti3+) and x = 2 (Ti3+/Ti4+) and a single oxidation state for x = 1 (Ti4+) and x = 3 (Ti3+) has been demonstrated. The results show a necessary set of symmetry reductions taking place due to the highest possible sodium/vacancy and titanium charge ordering with changing x. For each composition, an electroneutrality condition for the oxidation states of all atoms was applied which led to the discovery of several energy minima corresponding to different electronic configurations as identified by different Ti magnetic moments. An interesting relation between the bulk electronic properties of NaxTi2(PO4)3 compounds and the variation of sodium content was also found. In addition to sodium and titanium oxidation state charge ordering, the existence of large differences between the origin and the size of the band gap is shown. The band gap changes from the 4.05 eV 2p-3d gap in Na1Ti2(PO4)3 to the 0.59 eV 3d-3d gap in Na4Ti(PO4)3 with extra states due to mixed titanium valence. These results serve as an important electronic structure benchmark for further studies of such polyanion materials and help to explain some important properties of these systems relevant to battery applications.

4.
J Chem Phys ; 153(13): 134107, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33032424

ABSTRACT

The present paper investigates the F-type centers in α-Al2O3 through their electronic and vibrational properties from first principle calculations using a periodic supercell approach, a hybrid functional, and all-electron Gaussian basis sets as implemented in the CRYSTAL17 code. Single F-type and dimer F2-type centers related to oxygen vacancies in various charge states were considered. The defect-induced vibrational modes were identified and found to appear mainly in the low (up to 300 cm-1) and high (above 700 cm-1) frequency regions, depending on the defect charge. The perturbation introduced by the defects to the thermal nuclear motion in the crystal lattice is discussed in terms of atomic anisotropic displacement parameters. The calculated Raman spectra are discussed for the first time for such defects in α-Al2O3, suggesting important information for future experimental and theoretical studies and revealing deeper insight into their behavior.

5.
Phys Chem Chem Phys ; 21(42): 23541-23551, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31617511

ABSTRACT

We present the results of a detailed first principles study of the piezoelectric properties of the (SrTiO3)m/(BaTiO3)M-m heterostructure using the 3D STOm/BTOM-m superlattice model. The atomic basis set, hybrid functionals and slabs with different numbers of STO and BTO layers were used. The interplay between ferroelectric (FEz) and antiferrodistortive (AFDz) displacements is carefully analyzed. Based on the experimental data and group theoretical analysis, we deduce two possible space groups of tetragonal symmetry which allow us to reproduce the experimentally known pure STO and BTO bulk phases in the limiting cases, and to model the corresponding intermediate superlattices. The characteristic feature of the space group P4mm (#99) model is atomic displacements in the [001] direction, which allows us to simulate the FEz displacements, whereas the P4 (#75) model besides FEz displacements permits oxygen octahedra antiphase rotations around the [001] direction and thus AFDz displacements. Our calculations demonstrate that for m/M≤ 0.75 layer ratios both models show similar geometries and piezoelectric constants. Moreover, both models predict an approximately 6-fold increase of the piezoelectric constant e33 compared to the BaTiO3 bulk value, albeit at slightly different layer ratios. The obtained results clearly demonstrate that piezoelectricity arises due to the coordinated collective FEz displacements of atoms in both STO and BTO slabs and interfaces and reaches its maximum when the superlattice approaches the point where the tetragonal phase becomes unstable and transforms to a pseudo-cubic phase. We demonstrate that even a single or double layer of BTO is sufficient to trigger FEz displacements in the STO slab, in P4mm and P4 models, respectively.

6.
Phys Chem Chem Phys ; 19(37): 25245-25251, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28891585

ABSTRACT

Using site symmetry analysis, four possible positions of interstitial oxygen atoms in the α-Al2O3 hexagonal structure have been identified and studied. First principles hybrid functional calculations of the relevant atomic and electronic structures for interstitial Oi atom insertion in these positions reveal differences in energies of ∼1.5 eV. This approach allows us to get the lowest energy configuration, avoiding time-consuming calculations. It is shown that the triplet oxygen atom is barrierless displaced towards the nearest regular oxygen ion, forming a singlet dumbbell (split interstitial) configuration with an energy gain of ∼2.5 eV. The charge and spatial structure of the dumbbell is discussed. Our results are important, in particular, for understanding the radiation properties and stability of α-Al2O3 and other oxide crystals.

7.
Phys Chem Chem Phys ; 17(32): 20765-74, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26211926

ABSTRACT

The structural, electronic and thermodynamic properties of neutral and positively doubly charged oxygen vacancies in BaZrO3 are addressed by first principles phonon calculations. The calculations are performed using two complementary first principles approaches and functionals; the linear combination of atomic orbitals (LCAO) within the hybrid Hartree-Fock and density functional theory formalism (HF-DFT), and the projector augmented plane wave approach (PAW) within DFT. Phonons are shown to contribute significantly to the formation energy of the charged oxygen vacancy at high temperatures (∼1 eV at 1000 K), due to both its large distortion of the local structure, and its large negative formation volume. For the neutral vacancy, the resulting lattice distortions, and thus the contributions from phonons to the free formation energy, are significantly smaller. As a result, phonons affect the relative stability of the two defects at finite temperatures and the charge transition level for oxygen vacancies (+2/0) changes from 0.42 to 0.83 eV below the conduction band bottom from 0 K to 1000 K.

8.
Materials (Basel) ; 16(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37374544

ABSTRACT

In this work, the electronic structure and properties of NASICON-structured A4V2(PO4)3, where A = Li, Na, K were studied using hybrid density functional theory calculations. The symmetries were analyzed using a group theoretical approach, and the band structures were examined by the atom and orbital projected density of states analyses. Li4V2(PO4)3 and Na4V2(PO4)3 adopted monoclinic structures with the C2 space group and averaged vanadium oxidation states of V+2.5 in the ground state, whereas K4V2(PO4)3 adopted a monoclinic structure with the C2 space group and mixed vanadium oxidation states V+2/V+3 in the ground state. The mixed oxidation state is the least stable state in Na4V2(PO4)3 and Li4V2(PO4)3. Symmetry increases in Li4V2(PO4)3 and Na4V2(PO4)3 led to the appearance of a metallic state that was independent of the vanadium oxidation states (except for the averaged oxidation state R32 Na4V2(PO4)3). On the other hand, K4V2(PO4)3 retained a small band gap in all studied configurations. These results might provide valuable guidance for crystallography and electronic structure investigations for this important class of materials.

9.
Sci Rep ; 13(1): 16446, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37777629

ABSTRACT

We present theoretical justification for distorted Ruddlesden-Popper (RP) phases of the first-order by using hybrid density functional theory (DFT) calculations and group-theoretical analysis. We, thus, demonstrate the existence of the Jahn-Teller effect around an Fe[Formula: see text] ion in Sr[Formula: see text]FeO[Formula: see text]. On the calculation side, we have established a combination of Wu-Cohen (WC) exchange and Perdew-Wang (PW) correlation in a three-parameter functional WC3PW, giving the most accurate description of Sr[Formula: see text]FeO[Formula: see text] from the comparison of three hybrid DFT functionals. Self-consistently obtained Hartree-Fock exact exchange of 0.16 demonstrates consistent results with the experimental literature data. Importantly, we explain conditions for co-existing proper and pseudo-Jahn-Teller effects from the crystalline orbitals, symmetry-mode analysis and irreps products. Moreover, phonon frequency calculations support and confirm the results of symmetry-mode analysis. In particular, the symmetry-mode analysis identifies a dominating irreducible representation of the Jahn-Teller mode (X2+) and corresponding space group (SG) of ground state structure (SG Cmce model). Therefore, the usually suggested high-symmetry tetragonal crystal structure (SG I4/mmm model) is higher in energy by 121 meV/f.u. (equivalent to the Jahn-Teller stabilization energy) compared with the distorted low-symmetry structure (SG Cmce model). We also present diffraction patterns for the two crystal symmetries to discuss the differences. Therefore, our results shed light on the existence of low-symmetry RP phases and make possible direct comparisons with future experiments.

10.
Phys Chem Chem Phys ; 14(13): 4482-90, 2012 Apr 07.
Article in English | MEDLINE | ID: mdl-22362264

ABSTRACT

The DFT+U calculations were employed in a detailed study of the strong electron correlation effects in a promising nuclear fuel-uranium mononitride (UN). A simple method for solving the multiple minima problem in DFT+U simulations and insure obtaining the correct ground state is suggested and applied. The crucial role of spin-orbit interactions in reproduction of the U atom total magnetic moment is demonstrated. Basic material properties (the lattice constants, the spin- and total magnetic moments on U atoms, the magnetic ordering, and the density of states) were calculated varying the Hubbard U-parameter. By varying the tetragonal unit cell distortion, the meta-stable states have been carefully identified and analyzed. The difference in the magnetic and structural properties obtained for the meta-stable and ground states is discussed. The optimal effective Hubbard parameter U(eff) = 1.85 eV reproduces correctly the UN anti-ferromagnetic ordering, and only slightly overestimates the experimental total magnetic moment of the U atom and the unit cell volume.

11.
Materials (Basel) ; 15(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35408027

ABSTRACT

The atomic structure of antiphase boundaries in Sr-doped lanthanum scandate (La1-xSrxScO3-δ) perovskite, promising as the proton conductor, was modelled by means of DFT method. Two structural types of interfaces formed by structural octahedral coupling were constructed: edge- and face-shared. The energetic stability of these two interfaces was investigated. The mechanisms of oxygen vacancy formation and migration in both types of interfaces were modelled. It was shown that both interfaces are structurally stable and facilitate oxygen ionic migration. Oxygen vacancy formation energy in interfaces is lower than that in the regular structure, which favours the oxygen vacancy segregation within such interfaces. The calculated energy profile suggests that both types of interfaces are advantageous for oxygen ion migration in the material.

12.
Chem Mater ; 33(21): 8394-8403, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34992333

ABSTRACT

NAtrium SuperIonic CONductor (NASICON) structured phosphate framework compounds are attracting a great deal of interest as suitable electrode materials for "rocking chair" type batteries. Manganese-based electrode materials are among the most favored due to their superior stability, resource non-criticality, and high electrode potentials. Although a large share of research was devoted to Mn-based oxides for Li- and Na-ion batteries, the understanding of thermodynamics and phase formation in Mn-rich polyanions is still generally lacking. In this study, we investigate a bifunctional Na-ion battery electrode system based on NASICON-structured Na1+2x Mn x Ti2-x (PO4)3 (0.0 ≤ x ≤ 1.5). In order to analyze the thermodynamic and phase formation properties, we construct a composition-temperature phase diagram using a computational sampling by density functional theory, cluster expansion, and semi-grand canonical Monte Carlo methods. The results indicate finite thermodynamic limits of possible Mn concentrations in this system, which are primarily determined by the phase separation into stoichiometric Na3MnTi(PO4)3 (x = 1.0) and NaTi2(PO4)3 for x < 1.0 or NaMnPO4 for x > 1.0. The theoretical predictions are corroborated by experiments obtained using X-ray diffraction and Raman spectroscopy on solid-state and sol-gel prepared samples. The results confirm that this system does not show a solid solution type behavior but phase-separates into thermodynamically more stable sodium ordered monoclinic α-Na3MnTi(PO4)3 (space group C2) and other phases. In addition to sodium ordering, the anti-bonding character of the Mn-O bond as compared to Ti-O is suggested as another important factor governing the stability of Mn-based NASICONs. We believe that these results will not only clarify some important questions regarding the thermodynamic properties of NASICON frameworks but will also be helpful for a more general understanding of polyanionic systems.

13.
Phys Chem Chem Phys ; 12(38): 12273-8, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20714591

ABSTRACT

We have performed a detailed analysis of the magnetic (collinear and non-collinear) order and the atomic and electron structures of UO(2), PuO(2) and UN on the basis of density functional theory with the Hubbard electron correlation correction (DFT + U). We have shown that the 3-k magnetic structure of UO(2) is the lowest in energy for the Hubbard parameter value of U = 4.6 eV (and J = 0.5 eV) consistent with experiments when Dudarev's formalism is used. In contrast to UO(2), UN and PuO(2) show no trend for a distortion towards rhombohedral structure and, thus, no complex 3-k magnetic structure is to be anticipated in these materials.

14.
Phys Chem Chem Phys ; 11(33): 7241-7, 2009 Sep 07.
Article in English | MEDLINE | ID: mdl-19672535

ABSTRACT

We present and discuss results of the density functional theory (DFT) for perfect UO(2) crystals with He atoms in octahedral interstitial positions therein. We have calculated basic bulk crystal properties and He incorporation energies into the low temperature anti-ferromagnetic UO(2) phase using several exchange-correlation functionals within the spin-polarized local density (LDA) and generalized gradient (GGA) approximations. In all DFT calculations we included the on-site correlation corrections using the Hubbard model (DFT+U approach). We analysed a potential crystalline symmetry reduction from tetragonal down to orthorhombic structure and confirmed the presence of the Jahn-Teller effect in a perfect UO(2). We discuss also the problem of a conducting electronic state arising when He is placed into a tetragonal antiferromagnetic phase of UO(2) commonly used in defect modelling. Consequently, we found a specific monoclinic lattice distortion which allowed us to restore the semiconducting state and properly estimate He incorporation energies. Unlike the bulk properties, the He incorporation energy strongly depends on several factors, including the supercell size, the use of spin polarization, the exchange-correlation functionals and on-site correlation corrections. We compare our results for the He incorporation with the previous shell model and ab initio DFT calculations.

SELECTION OF CITATIONS
SEARCH DETAIL