Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Angew Chem Int Ed Engl ; 59(42): 18768-18773, 2020 10 12.
Article in English | MEDLINE | ID: mdl-32656924

ABSTRACT

Supramolecular eutectogels, an emerging class of materials that have just developed very recently, offer a new opportunity for generating functional supramolecular gel materials in biocompatible anhydrous or low-water media. As the first example of supramolecular G4 eutectogels, complexes of natural guanosine and H3 BO3 exhibited excellent gelation capacity in choline chloride/alcohol deep eutectic solvents. The as-prepared supramolecular eutectogels displayed unexpected solvent-induced chiral inversion and significantly high ionic conductivity (up to 7.78 mS cm-1 ), as well as outstanding thixotropic/injectable properties, high thermal stability and excellent electrochromic activity. These features make these versatile supramolecular G4 eutectogels promising candidates for developing next-generation flexible electronics with low environmental impact.

2.
Nat Commun ; 14(1): 5030, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37596287

ABSTRACT

The dynamic regulation of supramolecular chirality in non-equilibrium systems can provide valuable insights into molecular self-assembly in living systems. Herein, we demonstrate the use of chemical fuels for regulating self-assembly pathway, which thereby controls the supramolecular chirality of assembly in non-equilibrium systems. Depending on the nature of different fuel acids, the system shows pathway-dependent non-equilibrium self-assembly, resulting in either dynamic self-assembly with transient supramolecular chirality or kinetically trapped self-assembly with inverse supramolecular chirality. More importantly, successive conducting of chemical-fueled process and thermal annealing process allows for the sequential programmability of the supramolecular chirality between four different chiral hydrogels, affording a new example of a multistate supramolecular chiroptical switch that can be recycled multiple times. The current finding sheds new light on the design of future supramolecular chiral materials, offering access to alternative self-assembly pathways and kinetically controlled non-equilibrium states.

3.
Adv Mater ; 35(6): e2208392, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36401607

ABSTRACT

Next-generation energy storage devices should be soft, stretchable, and self-healable. Previously reported self-healable batteries mostly possess limited stretchability and rely on healable electrodes or electrolytes rather than achieving full-device self-healability. Herein, an all-component self-bonding strategy is reported to obtain an all-eutectogel soft battery (AESB) that simultaneously achieves full-cell autonomous self-healability and omnidirectional intrinsic stretchability (>1000% areal strain) over a broad temperature range (-20~60 °C). Without requiring any external stimulus, the five-layered soft battery can efficiently recover both its mechanical and electrochemical performance at full-cell level. The developed AESB can be easily configured into various 3D architectures with highly interfacial compatible eutectogel electrodes, electrolyte, and substrate, presenting an excellent opportunity for the development of embodied energy technologies. The present work provides a general and user-friendly soft electronic material platform for fabricating a variety of intrinsic self-healing stretchable multi-layered electronics, which are promising beyond the field of energy storage, such as displays, sensors, circuits, and soft robots.

4.
Adv Sci (Weinh) ; 9(20): e2200753, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35522020

ABSTRACT

Most existing stretchable batteries can generally only be stretched uniaxially and suffer from poor mechanical and electrochemical robustness to withstand extreme mechanical and environmental challenges. A highly efficient bifunctional electrocatalyst is herein developed via the unique self-templated conversion of a guanosine-based supramolecular hydrogel and presents a fully integrated design strategy to successfully fabricate an omnidirectionally stretchable and extremely environment-adaptable Zn-air battery (ZAB) through the synergistic engineering of active materials and device architecture. The electrocatalyst demonstrates a very low reversible overpotential of only 0.68 V for oxygen reduction/evolution reactions (ORR/OER). This ZAB exhibits superior omnidirectional stretchability with a full-cell areal strain of >1000% and excellent durability, withstanding more than 10 000 stretching cycles. Promisingly, without any additional pre-treatment, the ZAB exhibits outstanding ultra-low temperature tolerance (down to -60 °C) and superior waterproofness, withstanding continuous water rinsing (>5 h) and immersion (>3 h). The present work offers a promising strategy for the design of omnidirectionally stretchable and high-performance energy storage devices for future on-skin wearable applications.

5.
Mater Horiz ; 8(9): 2520-2532, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34870306

ABSTRACT

The current tough and stretchable gels with various integrated functions are mainly based on polymer hydrogels. By introducing a non-covalent supramolecular self-assembled network into a covalently cross-linked polymer network in the presence of eco-friendly and cost-effective deep eutectic solvents (DESs), we developed a new small molecule-based supramolecular-polymer double-network (SP-DN) eutectogel platform. This exciting material exhibits high stretchability and toughness (>18 000% areal strain), spontaneous self-healing ability, ultrafast (∼5 s) in situ underwater and low-temperature (-80 °C) adhesion, and unusual boiling water-resistance, as well as strong base-, strong acid- (even aqua regia), ultra-low-temperature- (liquid nitrogen, -196 °C), and high-temperature- (200 °C) resistance. All these outstanding properties strongly recommend the SP-DN eutectogels as a quasi-solid electrolyte for soft electrochromic devices, which exhibited exceptional flexibility and consistent electrochromic behaviours in harsh mechanical or temperature environments. The experimental and simulation results uncovered the assembly mechanism of the SP-DN eutectogels. Unlike polymer hydrogels, the obtained SP-DN eutectogels showed high molecular design freedom and structural versatility. The findings of this work offer a promising strategy for developing the next generation of mechanically robust and functionally integrated soft materials with high environmental adaptability.

SELECTION OF CITATIONS
SEARCH DETAIL