Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
J Med Virol ; 96(1): e29346, 2024 01.
Article in English | MEDLINE | ID: mdl-38178580

ABSTRACT

Orthohantaviruses, etiological agents of hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome, pose a critical public health threat worldwide. Hantaan orthohantavirus (HTNV) outbreaks are particularly endemic in Gyeonggi Province in northern area of the Republic of Korea (ROK). Small mammals were collected from three regions in the Gyeonggi Province during 2017 and 2018. Serological and molecular prevalence of HTNV was 25/201 (12.4%) and 10/25 (40%), respectively. A novel nanopore-based diagnostic assay using a cost-efficient Flongle chip was developed to rapidly and sensitively detect HTNV infection in rodent specimens within 3 h. A rapid phylogeographical surveillance of HTNV at high-resolution phylogeny was established using the amplicon-based Flongle sequencing. In total, seven whole-genome sequences of HTNV were newly obtained from wild rodents collected in Paju-si (Gaekhyeon-ri) and Yeoncheon-gun (Hyeonga-ri and Wangnim-ri), Gyeonggi Province. Phylogenetic analyses revealed well-supported evolutionary divergence and genetic diversity, enhancing the resolution of the phylogeographic map of orthohantaviruses in the ROK. Incongruences in phylogenetic patterns were identified among HTNV tripartite genomes, suggesting differential evolution for each segment. These findings provide crucial insights into on-site diagnostics, genome-based surveillance, and the evolutionary dynamics of orthohantaviruses to mitigate hantaviral outbreaks in HFRS-endemic areas in the ROK.


Subject(s)
Hantaan virus , Hemorrhagic Fever with Renal Syndrome , Orthohantavirus , Animals , Phylogeny , Hantaan virus/genetics , Orthohantavirus/genetics , Rodentia , Mammals , Republic of Korea/epidemiology
2.
Clin Infect Dis ; 70(3): 464-473, 2020 01 16.
Article in English | MEDLINE | ID: mdl-30891596

ABSTRACT

BACKGROUND: Endemic outbreaks of hantaviruses pose a critical public health threat worldwide. Hantaan orthohantavirus (HTNV) causes hemorrhagic fever with renal syndrome (HFRS) in humans. Using comparative genomic analyses of partial and nearly complete sequences of HTNV from humans and rodents, we were able to localize, with limitations, the putative infection locations for HFRS patients. Partial sequences might not reflect precise phylogenetic positions over the whole-genome sequences; finer granularity of rodent sampling reflects more precisely the circulation of strains. METHODS: Five HFRS specimens were collected. Epidemiological surveys were conducted with the patients during hospitalization. We conducted active surveillance at suspected HFRS outbreak areas. We performed multiplex polymerase chain reaction-based next-generation sequencing to obtain the genomic sequence of HTNV from patients and rodents. The phylogeny of human- and rodent-derived HTNV was generated using the maximum likelihood method. For phylogeographic analyses, the tracing of HTNV genomes from HFRS patients was defined on the bases of epidemiological interviews, phylogenetic patterns of the viruses, and geographic locations of HTNV-positive rodents. RESULTS: The phylogeographic analyses demonstrated genetic clusters of HTNV strains from clinical specimens, with HTNV circulating in rodents at suspected sites of patient infections. CONCLUSIONS: This study demonstrates a major shift in molecular epidemiological surveillance of HTNV. Active targeted surveillance was performed at sites of suspected infections, allowing the high-resolution phylogeographic analysis to reveal the site of emergence of HTNV. We posit that this novel approach will make it possible to identify infectious sources, perform disease risk assessment, and implement preparedness against vector-borne viruses.


Subject(s)
Hantaan virus , Hemorrhagic Fever with Renal Syndrome , Orthohantavirus , Orthohantavirus/genetics , Hemorrhagic Fever with Renal Syndrome/epidemiology , Humans , Phylogeny , Watchful Waiting
3.
Eur J Clin Microbiol Infect Dis ; 38(4): 793-800, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30693422

ABSTRACT

Human adenovirus (HAdV) is a common pathogen causing respiratory infections with outbreaks reported in the military and community. However, little information is available on the shedding kinetics. We performed a prospective study of immunocompetent adults confirmed with HAdV respiratory infection by multiplex real-time PCR during an outbreak of HAdV-55. Consecutive respiratory specimens of sputum or nasopharyngeal swab were collected from each patient every 2 days. Viral load was measured by real-time quantitative PCR. Of 32 enrolled patients, 27 (84.4%) had pneumonia. Five patients (15.6%) received cidofovir. Viral load was highest in the earliest samples at 8.69 log10 copies/mL. In a linear regression model, viral load declined consistently in a log-linear fashion at the rate of - 0.15 log10 copies/mL per day (95% confidence interval (CI): - 0.18, - 0.12; R2 = 0.32). However, the regression model estimated the viral shedding duration to be 55 days. The rate of decline in viral load did not differ between patients who received cidofovir and who did not. Patients with prominent respiratory symptoms or extensive involvement on chest radiograph had higher volume of viral excretion. Prolonged viral shedding was observed in otherwise healthy adults with HAdV-55 respiratory infection. This finding should be considered in the establishment of infection control and prevention strategies.


Subject(s)
Adenovirus Infections, Human/diagnosis , Adenoviruses, Human/physiology , Respiratory Tract Infections/virology , Virus Shedding , Adenovirus Infections, Human/drug therapy , Adenoviruses, Human/classification , Adolescent , Disease Outbreaks , Humans , Immunocompetence , Linear Models , Male , Nasopharynx/virology , Pneumonia, Viral/diagnosis , Prospective Studies , Real-Time Polymerase Chain Reaction , Republic of Korea/epidemiology , Sputum/virology , Viral Load , Young Adult
4.
Emerg Infect Dis ; 24(2): 249-257, 2018 02.
Article in English | MEDLINE | ID: mdl-29350137

ABSTRACT

Seoul virus (SEOV) poses a worldwide public health threat. This virus, which is harbored by Rattus norvegicus and R. rattus rats, is the causative agent of hemorrhagic fever with renal syndrome (HFRS) in humans, which has been reported in Asia, Europe, the Americas, and Africa. Defining SEOV genome sequences plays a critical role in development of preventive and therapeutic strategies against the unique worldwide hantavirus. We applied multiplex PCR-based next-generation sequencing to obtain SEOV genome sequences from clinical and reservoir host specimens. Epidemiologic surveillance of R. norvegicus rats in South Korea during 2000-2016 demonstrated that the serologic prevalence of enzootic SEOV infections was not significant on the basis of sex, weight (age), and season. Viral loads of SEOV in rats showed wide dissemination in tissues and dynamic circulation among populations. Phylogenetic analyses showed the global diversity of SEOV and possible genomic configuration of genetic exchanges.


Subject(s)
Genetic Variation , Hemorrhagic Fever with Renal Syndrome/virology , Multiplex Polymerase Chain Reaction , Seoul virus/genetics , Animals , Genome, Viral , Global Health , Hemorrhagic Fever with Renal Syndrome/epidemiology , Humans , Phylogeography , RNA, Viral/genetics , Rats , Republic of Korea/epidemiology , Retrospective Studies , Seasons , Serologic Tests
5.
Emerg Infect Dis ; 23(6): 1016-1020, 2017 06.
Article in English | MEDLINE | ID: mdl-28518038

ABSTRACT

An outbreak of febrile respiratory illness associated with human adenovirus (HAdV) occurred in the South Korea military during the 2014-15 influenza season and thereafter. Molecular typing and phylogenetic analysis of patient samples identified HAdV type 55 as the causative agent. Emergence of this novel HAdV necessitates continued surveillance in military and civilian populations.


Subject(s)
Adenovirus Infections, Human/epidemiology , Adenoviruses, Human/genetics , Disease Outbreaks , Genes, Viral , Respiratory Tract Infections/epidemiology , Adenovirus Infections, Human/virology , Adenoviruses, Human/classification , Adenoviruses, Human/isolation & purification , Adult , Humans , Military Personnel , Molecular Typing , Phylogeny , Republic of Korea/epidemiology , Respiratory Tract Infections/virology , Seasons
6.
Virus Genes ; 53(6): 918-921, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28795266

ABSTRACT

Zika virus (ZIKV) (genus Flavivirus, family Flaviviridae) is an emerging pathogen associated with microcephaly and Guillain-Barré syndrome. The rapid spread of ZIKV disease in over 60 countries and the large numbers of travel-associated cases have caused worldwide concern. Thus, intensified surveillance of cases among immigrants and tourists from ZIKV-endemic areas is important for disease control and prevention. In this study, using Next Generation Sequencing, we reported the first whole-genome sequence of ZIKV strain AFMC-U, amplified from the urine of a traveler returning to Korea from the Philippines. Phylogenetic analysis showed geographic-specific clustering. Our results underscore the importance of examining urine in the diagnosis of ZIKV infection.


Subject(s)
Zika Virus Infection/virology , Humans , Philippines , Phylogeny , Republic of Korea , Travel , Whole Genome Sequencing/methods , Zika Virus/genetics
7.
Microbiol Immunol ; 60(4): 268-71, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26917012

ABSTRACT

Hantaan virus (HTNV), of the family Bunyaviridae, causes hemorrhagic fever with renal syndrome (HFRS) in humans. Although the majority of epidemiologic studies have found that rodents are seropositive for hantavirus-specific immunoglobulin, the discovery of hantavirus RNA in seronegative hosts has led to an investigation of the presence of HTNV RNA in rodents captured in HFRS endemic areas. HTNV RNA was detected in seven (3.8%) of 186 anti-HTNV IgG seronegative rodents in Republic of Korea (ROK) during 2013-2014. RT-qPCR for HTNV RNA revealed dynamic virus-host interactions of HTNV in areas of high endemicity, providing important insights into the epidemiology of hantaviruses.


Subject(s)
Hantaan virus/immunology , Hemorrhagic Fever with Renal Syndrome/epidemiology , Hemorrhagic Fever with Renal Syndrome/immunology , Immunoglobulin G/immunology , RNA, Viral/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Endemic Diseases , Hantaan virus/genetics , Host-Pathogen Interactions , Humans , Immunoglobulin G/blood , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Republic of Korea/epidemiology
8.
J Virol ; 88(13): 7663-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24741077

ABSTRACT

The recent discovery of hantaviruses in shrews and bats in West Africa suggests that other genetically distinct hantaviruses exist in East Africa. Genetic and phylogenetic analyses of newfound hantaviruses, detected in archival tissues from the Geata mouse shrew (Myosorex geata) and Kilimanjaro mouse shrew ( Myosorex zinki) captured in Tanzania, expands the host diversity and geographic distribution of hantaviruses and suggests that ancestral shrews and/or bats may have served as the original mammalian hosts of primordial hantaviruses.


Subject(s)
Chiroptera/virology , Hantavirus Infections/veterinary , Orthohantavirus/classification , Orthohantavirus/isolation & purification , Shrews/virology , Africa South of the Sahara , Animals , Geography , Orthohantavirus/genetics , Hantavirus Infections/virology , Mice , Phylogeny
9.
Virol J ; 10: 160, 2013 May 22.
Article in English | MEDLINE | ID: mdl-23693084

ABSTRACT

BACKGROUND: Guided by decades-old reports of hantaviral antigens in the Eurasian common shrew (Sorex araneus) and the Eurasian water shrew (Neomys fodiens) in European Russia, we employed RT-PCR to analyze lung tissues of soricine shrews, captured in Boginia, Huta Dlutowska and Kurowice in central Poland during September 2010, 2011 and 2012. FINDINGS: In addition to Seewis virus (SWSV), which had been previously found in Eurasian common shrews elsewhere in Europe, a genetically distinct hantavirus, designated Boginia virus (BOGV), was detected in Eurasian water shrews captured in each of the three villages. Phylogenetic analysis, using maximum likelihood and Bayesian methods, showed that BOGV formed a separate lineage distantly related to SWSV. CONCLUSIONS: Although the pathogenic potential of BOGV and other recently identified shrew-borne hantaviruses is still unknown, clinicians should be vigilant for unusual febrile diseases and clinical syndromes occurring among individuals reporting exposures to shrews.


Subject(s)
Eulipotyphla/virology , Orthohantavirus/classification , Orthohantavirus/isolation & purification , Animals , Cluster Analysis , Genotype , Orthohantavirus/genetics , Lung/virology , Molecular Sequence Data , Phylogeny , Poland , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology
10.
Viruses ; 15(6)2023 06 02.
Article in English | MEDLINE | ID: mdl-37376613

ABSTRACT

The recent detection of both Nova virus (NVAV) and Bruges virus (BRGV) in European moles (Talpa europaea) in Belgium and Germany prompted a search for related hantaviruses in the Iberian mole (Talpa occidentalis). RNAlater®-preserved lung tissue from 106 Iberian moles, collected during January 2011 to June 2014 in Asturias, Spain, were analyzed for hantavirus RNA by nested/hemi-nested RT-PCR. Pairwise alignment and comparison of partial L-segment sequences, detected in 11 Iberian moles from four parishes, indicated the circulation of genetically distinct hantaviruses. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, demonstrated three distinct hantaviruses in Iberian moles: NVAV, BRGV, and a new hantavirus, designated Asturias virus (ASTV). Of the cDNA from seven infected moles processed for next generation sequencing using Illumina HiSeq1500, one produced viable contigs, spanning the S, M and L segments of ASTV. The original view that each hantavirus species is harbored by a single small-mammal host species is now known to be invalid. Host-switching or cross-species transmission events, as well as reassortment, have shaped the complex evolutionary history and phylogeography of hantaviruses such that some hantavirus species are hosted by multiple reservoir species, and conversely, some host species harbor more than one hantavirus species.


Subject(s)
Hantavirus Infections , Moles , Orthohantavirus , Animals , Phylogeny , Spain , Orthohantavirus/genetics , Bayes Theorem , Hantavirus Infections/veterinary
11.
Mol Biotechnol ; 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37428433

ABSTRACT

Potential threat of smallpox bioterrorism and concerns related to the adverse effects of currently licensed live-virus vaccines suggest the need to develop novel vaccines with better efficacy against smallpox. Use of DNA vaccines containing specific antigen-encoding plasmids prevents the risks associated with live-virus vaccines, offering a promising alternative to conventional smallpox vaccines. In this study, we investigated the efficiency of toll-like receptor (TLR) ligands in enhancing the immunogenicity of smallpox DNA vaccines. BALB/c mice were immunized with a DNA vaccine encoding the vaccinia virus L1R protein, along with the cytosine-phosphate-guanine (CpG) motif as a vaccine adjuvant, and their immune response was analyzed. Administration of B-type CpG oligodeoxynucleotides (ODNs) as TLR9 ligands 24 h after DNA vaccination enhanced the Th2-biased L1R-specific antibody immunity in mice. Moreover, B-type CpG ODNs improved the protective effects of the DNA vaccine against the lethal Orthopoxvirus challenge. Therefore, use of L1R DNA vaccines with CpG ODNs as adjuvants is a promising approach to achieve effective immunogenicity against smallpox infection.

12.
Front Microbiol ; 14: 1258091, 2023.
Article in English | MEDLINE | ID: mdl-37840724

ABSTRACT

Introduction: Antisense oligonucleotides (ASOs) with therapeutic potential have recently been reported to target the SARS-CoV-2 genome. Peptide nucleic acids (PNAs)-based ASOs have been regarded as promising drug candidates, but intracellular delivery has been a significant obstacle. Here, we present novel modified PNAs, termed OPNAs, with excellent cell permeability that disrupt the RNA genome of SARS-CoV-2 and HCoV-OC43 by introducing cationic lipid moiety onto the nucleobase of PNA oligomer backbone. Methods: HCT-8 cells and Caco-2 cells were treated with 1 µM antisense OPNAs at the time of viral challenge and the Viral RNA levels were measured by RT-qPCR three days post infection. Results: NSP 14 targeting OPNA 5 and 11, reduced the viral titer to a half and OPNA 530, 531 and 533 lowered viral gene expression levels to less than 50% of control by targeting the 5' UTR region. Several modifications (oligo size and position, etc.) were introduced to enhance the efficacy of selected OPNAs. Improved OPNAs exhibited a dose-dependent reduction in viral replication and nucleoprotein (NP) protein. When a mixture of oligomers was applied to infected cells, viral titer and NP levels decreased by more than eightfold. Discussion: In this study, we have developed a modified PNA ASO platform with exceptional chemical stability, high binding affinity, and cellular permeability. These findings indicate that OPNAs are a promising platform for the development of antivirals to combat future pandemic viral infections that do not require a carrier.

13.
Virol J ; 9: 34, 2012 Jan 26.
Article in English | MEDLINE | ID: mdl-22281072

ABSTRACT

Recently identified hantaviruses harbored by shrews and moles (order Soricomorpha) suggest that other mammals having shared ancestry may serve as reservoirs. To investigate this possibility, archival tissues from 213 insectivorous bats (order Chiroptera) were analyzed for hantavirus RNA by RT-PCR. Following numerous failed attempts, hantavirus RNA was detected in ethanol-fixed liver tissue from two banana pipistrelles (Neoromicia nanus), captured near Mouyassué village in Côte d'Ivoire, West Africa, in June 2011. Phylogenetic analysis of partial L-segment sequences using maximum-likelihood and Bayesian methods revealed that the newfound hantavirus, designated Mouyassué virus (MOUV), was highly divergent and basal to all other rodent- and soricomorph-borne hantaviruses, except for Nova virus in the European common mole (Talpa europaea). Full genome sequencing of MOUV and further surveys of other bat species for hantaviruses, now underway, will provide critical insights into the evolution and diversification of hantaviruses.


Subject(s)
Orthohantavirus/genetics , Animals , Chiroptera/virology , Cote d'Ivoire , Orthohantavirus/classification , Phylogeny , RNA-Dependent RNA Polymerase/genetics
14.
Health Sci Rep ; 5(6): e856, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36210871

ABSTRACT

Background and aims: Despite global vaccination efforts, the number of confirmed cases of coronavirus disease 2019 (COVID-19) remains high. To overcome the crisis precipitated by the ongoing pandemic, characteristic studies such as virus diagnosis, isolation, and genome analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are necessary. Herein, we report the isolation and molecular characterization of SARS-CoV-2 from the saliva of patients who had tested positive for COVID-19 at Proving Ground in Taean County, Republic of Korea, in 2020. Methods: We analyzed the whole-genome sequence of SARS-CoV-2 isolated from the saliva samples of patients through next-generation sequencing. We also successfully isolated SARS-CoV-2 from the saliva samples of two patients by using cell culture, which was used to study the cytopathic effects and viral replication in Vero E6 cells. Results: Whole-genome sequences of the isolates, SARS-CoV-2 ADD-2 and ADD-4, obtained from saliva were identical, and phylogenetic analysis using Bayesian inference methods showed SARS-CoV-2 GH clade (B.1.497) genome-specific clustering. Typical coronavirus-like particles, with diameters of 70-120 nm, were observed in the SARS-CoV-2 infected Vero E6 cells using transmission electron microscopy. Conclusion: In conclusion, this report provides insights into the molecular diagnosis, isolation, genetic characteristics, and diversity of SARS-CoV-2 isolated from the saliva of patients. Further studies are needed to explore and monitor the evolution and characteristics of SARS-CoV-2 variants.

15.
Pathogens ; 11(9)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36145479

ABSTRACT

Seoul virus (SEOV), an etiological agent for hemorrhagic fever with renal syndrome, poses a significant public health threat worldwide. This study evaluated the feasibility of a mobile Biomeme platform for facilitating rapid decision making of SEOV infection. A total of 27 Rattus norvegicus were collected from Seoul Metropolitan City and Gangwon Province in Republic of Korea (ROK), during 2016-2020. The serological and molecular prevalence of SEOV was 5/27 (18.5%) and 2/27 (7.4%), respectively. SEOV RNA was detected in multiple tissues of rodents using the Biomeme device, with differences in Ct values ranging from 0.6 to 2.1 cycles compared to a laboratory benchtop system. Using amplicon-based next-generation sequencing, whole-genome sequences of SEOV were acquired from lung tissues of Rn18-1 and Rn19-5 collected in Gangwon Province. Phylogenetic analysis showed a phylogeographical diversity of rat-borne orthohantavirus collected in Gangwon Province. We report a novel isolate of SEOV Rn19-5 from Gangwon Province. Our findings demonstrated that the Biomeme system can be applied for the molecular diagnosis of SEOV comparably to the laboratory-based platform. Whole-genome sequencing of SEOV revealed the phylogeographical diversity of orthohantavirus in the ROK. This study provides important insights into the field-deployable diagnostic assays and genetic diversity of orthohantaviruses for the rapid response to hantaviral outbreaks in the ROK.

16.
PLoS Negl Trop Dis ; 16(9): e0010763, 2022 09.
Article in English | MEDLINE | ID: mdl-36094957

ABSTRACT

BACKGROUND: Whole-genome sequencing plays a critical role in the genomic epidemiology intended to improve understanding the spread of emerging viruses. Dabie bandavirus, causing severe fever with thrombocytopenia syndrome (SFTS), is a zoonotic tick-borne virus that poses a significant public health threat. We aimed to evaluate a novel amplicon-based nanopore sequencing tool to obtain whole-genome sequences of Dabie bandavirus, also known as SFTS virus (SFTSV), and investigate the molecular prevalence in wild ticks, Republic of Korea (ROK). PRINCIPAL FINDINGS: A total of 6,593 ticks were collected from Gyeonggi and Gangwon Provinces, ROK in 2019 and 2020. Quantitative polymerase chain reaction revealed the presence of SFSTV RNA in three Haemaphysalis longicornis ticks. Two SFTSV strains were isolated from H. longicornis captured from Pocheon and Cheorwon. Multiplex polymerase chain reaction-based nanopore sequencing provided nearly full-length tripartite genome sequences of SFTSV within one hour running. Phylogenetic and reassortment analyses were performed to infer evolutionary relationships among SFTSVs. Phylogenetic analysis grouped SFTSV Hl19-31-4 and Hl19-31-13 from Pocheon with sub-genotype B-1 in all segments. SFTSV Hl20-8 was found to be a genomic organization compatible with B-1 (for L segment) and B-2 (for M and S segments) sub-genotypes, indicating a natural reassortment between sub-genotypes. CONCLUSION/SIGNIFICANCE: Amplicon-based next-generation sequencing is a robust tool for whole-genome sequencing of SFTSV using the nanopore platform. The molecular prevalence and geographical distribution of SFTSV enhanced the phylogeographic map at high resolution for sophisticated prevention of emerging SFTS in endemic areas. Our findings provide important insights into the rapid whole-genome sequencing and genetic diversity for the genome-based diagnosis of SFTSV in the endemic outbreak.


Subject(s)
Bunyaviridae Infections , Nanopore Sequencing , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Ticks , Animals , Bunyaviridae Infections/epidemiology , Genetic Variation , Multiplex Polymerase Chain Reaction , Phlebovirus/genetics , Phylogeny , RNA , Republic of Korea/epidemiology
17.
Virol J ; 8: 56, 2011 Feb 08.
Article in English | MEDLINE | ID: mdl-21303516

ABSTRACT

Recently, Imjin virus (MJNV), a genetically distinct hantavirus, was isolated from lung tissues of the Ussuri white-toothed shrew (Crocidura lasiura) captured near the demilitarized zone in the Republic of Korea. To clarify the genetic diversity of MJNV, partial M- and L-segment sequences were amplified from lung tissues of 12 of 37 (32.4%) anti-MJNV IgG antibody-positive Ussuri white-toothed shrews captured between 2004 and 2010. A 531-nucleotide region of the M segment (coordinates 2,255 to 2,785) revealed that the 12 MJNV strains differed by 0-12.2% and 0-2.3% at the nucleotide and amino acid levels, respectively. A similar degree of nucleotide (0.2-11.9%) and amino acid (0-3.8%) difference was found in a 632-nucleotide length of the L segment (coordinates 962 to 1,593) of nine MJNV strains. Phylogenetic analyses, based on the partial M and L segments of MJNV strains generated by the neighbor-joining and maximum likelihood methods, showed geographic-specific clustering, akin to the phylogeography of rodent-borne hantaviruses.


Subject(s)
Eulipotyphla/virology , Genetic Variation , Orthohantavirus/classification , Orthohantavirus/genetics , Animals , Orthohantavirus/isolation & purification , Lung/virology , Molecular Sequence Data , Phylogeny , RNA, Viral/genetics , Republic of Korea , Sequence Analysis, DNA , Sequence Homology , Viral Proteins/genetics
18.
PLoS Negl Trop Dis ; 15(9): e0009707, 2021 09.
Article in English | MEDLINE | ID: mdl-34582439

ABSTRACT

BACKGROUND: Hantavirus infection occurs through the inhalation of aerosolized excreta, including urine, feces, and saliva of infected rodents. The presence of Hantaan virus (HTNV) RNA or infectious particles in urine specimens of patient with hemorrhagic fever with renal syndrome (HFRS) remains to be investigated. METHODOLOGY/PRINCIPAL FINDINGS: We collected four urine and serum specimens of Republic of Korea Army (ROKA) patients with HFRS. We performed multiplex PCR-based next-generation sequencing (NGS) to obtain the genome sequences of clinical HTNV in urine specimens containing ultra-low amounts of viral genomes. The epidemiological and phylogenetic analyses of HTNV demonstrated geographically homogenous clustering with those in Apodemus agrarius captured in highly endemic areas, indicating that phylogeographic tracing of HTNV genomes reveals the potential infection sites of patients with HFRS. Genetic exchange analyses showed a genetic configuration compatible with HTNV L segment exchange in nature. CONCLUSION/SIGNIFICANCE: Our results suggest that whole or partial genome sequences of HTNV from the urine enabled to track the putative infection sites of patients with HFRS by phylogeographically linking to the zoonotic HTNV from the reservoir host captured at endemic regions. This report raises awareness among physicians for the presence of HTNV in the urine of patients with HFRS.


Subject(s)
Genome, Viral , Hantaan virus/isolation & purification , Hemorrhagic Fever with Renal Syndrome/virology , Urine/virology , Hantaan virus/classification , Hantaan virus/genetics , Hemorrhagic Fever with Renal Syndrome/urine , High-Throughput Nucleotide Sequencing , Humans , Multiplex Polymerase Chain Reaction , Phylogeny , Republic of Korea
19.
Nat Commun ; 12(1): 288, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436577

ABSTRACT

Vaccines and therapeutics are urgently needed for the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we screen human monoclonal antibodies (mAb) targeting the receptor binding domain (RBD) of the viral spike protein via antibody library constructed from peripheral blood mononuclear cells of a convalescent patient. The CT-P59 mAb potently neutralizes SARS-CoV-2 isolates including the D614G variant without antibody-dependent enhancement effect. Complex crystal structure of CT-P59 Fab/RBD shows that CT-P59 blocks interaction regions of RBD for angiotensin converting enzyme 2 (ACE2) receptor with an orientation that is notably different from previously reported RBD-targeting mAbs. Furthermore, therapeutic effects of CT-P59 are evaluated in three animal models (ferret, hamster, and rhesus monkey), demonstrating a substantial reduction in viral titer along with alleviation of clinical symptoms. Therefore, CT-P59 may be a promising therapeutic candidate for COVID-19.


Subject(s)
Antibodies, Neutralizing/pharmacology , COVID-19 Drug Treatment , Protein Binding/drug effects , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/drug effects , Angiotensin-Converting Enzyme 2/chemistry , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Chlorocebus aethiops , Disease Models, Animal , Female , Ferrets , Humans , Leukocytes, Mononuclear , Macaca mulatta , Male , Mesocricetus , Models, Molecular , Protein Conformation , Spike Glycoprotein, Coronavirus/chemistry , Vero Cells
20.
J Virol ; 83(12): 6184-91, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19357167

ABSTRACT

Until recently, the single known exception to the rodent-hantavirus association was Thottapalayam virus (TPMV), a long-unclassified virus isolated from the Asian house shrew (Suncus murinus). Robust gene amplification techniques have now uncovered several genetically distinct hantaviruses from shrews in widely separated geographic regions. Here, we report the characterization of a newly identified hantavirus, designated Imjin virus (MJNV), isolated from the lung tissues of Ussuri white-toothed shrews of the species Crocidura lasiura (order Soricomorpha, family Soricidae, subfamily Crocidurinae) captured near the demilitarized zone in the Republic of Korea during 2004 and 2005. Seasonal trapping revealed the highest prevalence of MJNV infection during the autumn, with evidence of infected shrews' clustering in distinct foci. Also, marked male predominance among anti-MJNV immunoglobulin G antibody-positive Ussuri shrews was found, whereas the male-to-female ratio among seronegative Ussuri shrews was near 1. Plaque reduction neutralization tests showed no cross neutralization for MJNV and rodent-borne hantaviruses but one-way cross neutralization for MJNV and TPMV. The nucleotide and deduced amino acid sequences for the different MJNV genomic segments revealed nearly the same calculated distances from hantaviruses harbored by rodents in the subfamilies Murinae, Arvicolinae, Neotominae, and Sigmodontinae. Phylogenetic analyses of full-length S, M, and L segment sequences demonstrated that MJNV shared a common ancestry with TPMV and remained in a distinct out-group, suggesting early evolutionary divergence. Studies are in progress to determine if MJNV is pathogenic for humans.


Subject(s)
Orthohantavirus/genetics , Phylogeny , Shrews/virology , Animals , Antibodies, Viral/blood , Antigens, Viral/genetics , Chlorocebus aethiops , DNA, Mitochondrial/genetics , Female , Genome, Viral , Orthohantavirus/classification , Orthohantavirus/isolation & purification , Orthohantavirus/ultrastructure , Korea , Male , Microscopy, Electron, Transmission , Neutralization Tests , Prevalence , RNA, Viral/genetics , Seasons , Vero Cells , Viral Plaque Assay
SELECTION OF CITATIONS
SEARCH DETAIL