ABSTRACT
A strategy integrating in silico molecular docking with LXRα and phenotypic assays was adopted to discover anti-hypercholesterolemia agents in a small library containing 205 marine microorganism-derived natural products, collected by our group in recent years. Two fumitremorgin derivatives, 12R,13S-dihydroxyfumitremorgin C (1) and tryprostatin A (3), were identified as potential LXRα agonists, by real-time qPCR and Western blot (WB) analysis, together with a surface plasmon resonance (SPR) assay. The anti-hypercholesterolemic effects of 1 and 3, together with their mechanisms, were investigated in depth using different cell and mouse models, among which the study of LXRα is of crucial importance. Compound 1 or 3 exhibited the capacity to effectively reverse excessive lipid accumulation in a hepatic steatosis cell model and significantly reduce liver damage and blood cholesterol levels in high cholesterol diet (HCD)-fed wild-type mice, whereas those beneficial effects were completely nullified in HCD-fed LXRα-knockout mice. Furthermore, 1 and 3 outperformed common LXRα agonists by suppressing the expression of sterol regulatory element-binding protein 1 (SREBP1) in HCD-fed mice, mitigating lipotoxicity. Thus, this study highlights the discovery of two marine microorganism-derived anti-hypercholesterolemia agents targeting LXRα.
Subject(s)
Hypercholesterolemia , Orphan Nuclear Receptors , Animals , Mice , Cholesterol/metabolism , Hypercholesterolemia/drug therapy , Liver , Liver X Receptors/metabolism , Mice, Knockout , Molecular Docking Simulation , Orphan Nuclear Receptors/metabolism , Orphan Nuclear Receptors/pharmacologyABSTRACT
Four new sesquiterpenoids, talaroterpenes A-D (1-4), were isolated from the mangrove-derived fungus Talaromyces sp. SCSIO 41412. The structures of compounds 1-4 were elucidated through comprehensive NMR and MS spectroscopic analyses. The absolute configurations of 1-4 were assigned based on single-crystal X-ray diffraction and calculated electronic circular dichroism analysis. Talaroterpenes A-D (1-4) were evaluated with their regulatory activities on nuclear receptors in HepG2 cells. Under the concentrations of 200 µM, 1, 3 and 4 exhibited varying degrees of activation on ABCA1 and PPARα, while 4 showed the strongest activities. Furthermore, 4 induced significant alterations in the expression of downstream target genes CLOCK and BMAL1 of RORα, and the in silico molecular docking analysis supported the direct binding interactions of 4 with RORα protein. This study revealed that talaroterpene D (4) was a new potential non-toxic modulator of nuclear receptors.
Subject(s)
Molecular Docking Simulation , Sesquiterpenes , Talaromyces , Humans , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Talaromyces/chemistry , Hep G2 Cells , Receptors, Cytoplasmic and Nuclear/metabolismABSTRACT
Hyperbilirubinemia is a serious hazard to human health due to its neurotoxicity and lethality. So far, successful therapy for hyperbilirubinemia with fewer side effects is still lacking. In this study, we aimed to clarify the effects of oridonin (Ori), an active diterpenoid extracted from Rabdosia rubescens, on hyperbilirubinemia and revealed the underlying molecular mechanism in vivo and in vitro. Here, we showed that liver X receptor alpha (LXRα) deletion eliminated the protective effect of Ori on phenylhydrazine hydrochloride-induced hyperbilirubinemia mice, indicating that LXRα acted as a key target for Ori treatment of hyperbilirubinemia. Ori significantly increased the expression of LXRα and UDP-glucuronosyltransferase 1A1 (UGT1A1) in the liver of wild-type (WT) mice, which were lost in LXRα-/- mice. Ori or LXR agonist GW3965 also reduced lipopolysaccharide/D-galactosamine-induced hyperbilirubinemia via activating LXRα/UGT1A1 in WT mice. Liver UGT1A1 enzyme activity was elevated by Ori or GW3965 in WT mice. Further, Ori up-regulated LXRα gene expression, increased its nuclear translocation and stimulated UGT1A1 promoter activity in HepG2 cells. After silencing LXRα by siRNA, Ori-induced UGT1A1 expression was markedly reduced in HepG2 cells and primary mouse hepatocytes. Taken together, Ori stimulated the transcriptional activity of LXRα, resulting in the up-regulation of UGT1A1. Therefore, Ori or its analogs might have the potential to treat hyperbilirubinemia-related diseases through modulating LXRα-UGT1A1 signaling.
Subject(s)
Bilirubin , Hyperbilirubinemia , Animals , Diterpenes, Kaurane , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Hyperbilirubinemia/chemically induced , Hyperbilirubinemia/drug therapy , Hyperbilirubinemia/genetics , Liver X Receptors , MiceABSTRACT
Four new chromene derivatives, pestalotiochromenoic acids A - D (1, 2, 4, and 5), and two new chromone derivatives, pestalotiochromones A and B (6 and 7), were obtained from the marine alga-derived fungus Pestalotiopsis neglecta SCSIO41403, as well as a reported derivate named piperochromenoic acid (3) with its configuration determined for the first time. Their structures were determined by detailed nuclear magnetic resonance (NMR) and mass spectroscopic analyses, while the absolute configurations were established by theoretical NMR and electronic circular dichroism (ECD) calculation, including Mo2(OAc)4-induced ECD experiments. Those chromene and chromone derivatives displayed weak cytotoxicity, but showed obvious liver X receptors (LXRs) modulatory activities, by in vitro tests on the expression of LXRα, LXRß and theirtarget gene ABCA1, as well as in silico docking analysis. Moreover, the high binding affinities between pestalotiochromone A (6) and LXRα, revealed by surface plasmon resonance (SPR) with the dissociation equilibrium constant (KD) value of 6.2 µM, demonstrated 6 could act as a new potential LXR agonist.
Subject(s)
Chromones/pharmacology , Liver X Receptors/metabolism , Neglecta/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Chromones/chemistry , Chromones/isolation & purification , Dose-Response Relationship, Drug , Humans , Liver X Receptors/genetics , Molecular Structure , Structure-Activity RelationshipABSTRACT
Sepsis is a serious condition with a high mortality rate worldwide. Granisetron is an anti-nausea drug for patients undergoing chemotherapy. Here we aimed to identify the novel effect of granisetron on sepsis-induced acute lung injury (ALI). Our results showed that mice treated with granisetron displayed less severe lung damage than controls. Granisetron administration reduced pulmonary neutrophil recruitment after CLP. Moreover, the expressions of Cxcl1 and Cxcl2 were diminished in the presence of granisetron in THP-1 macrophages after lipopolysaccharide exposure. Additionally, granisetron could inhibit the activation of p38 MAPK and NLRP3 inflammasome both in vivo and in vitro. Collectively, granisetron protects against sepsis-induced ALI by suppressing macrophage Cxcl1/Cxcl2 expression and neutrophil recruitment in the lung.
Subject(s)
Acute Lung Injury/drug therapy , Acute Lung Injury/microbiology , Granisetron/therapeutic use , Sepsis/drug therapy , Sepsis/microbiology , Acute Lung Injury/pathology , Animals , Chemokine CXCL1/metabolism , Chemokine CXCL2/metabolism , Granisetron/pharmacology , Humans , Inflammasomes/metabolism , Lung/metabolism , Lung/microbiology , Lung/pathology , MAP Kinase Signaling System/drug effects , Male , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neutrophil Infiltration/drug effects , Phosphorylation/drug effects , Reactive Oxygen Species/metabolism , Sepsis/pathology , THP-1 Cells , p38 Mitogen-Activated Protein Kinases/metabolismABSTRACT
Two novel sorbicillinoid adducts containing bicyclo[2.2.2]octane and tetrahydrofuran moieties, named sorbicillfurans A and B (1 and 2), were isolated from the static culture of the marine-derived fungus Penicillium citrinum SCSIO41402. Their structures including absolute configurations were determined by spectroscopic and calculated ECD analyses. Sorbicillfurans A and B (1 and 2) are the first examples of sorbicillinoids possessing a tetrahydrofuran unit. In the proposed biosynthetic pathway, sorbicillfuran B (2), harboring a rare and complex polycyclic framework, is probably formed by two Diels-Alder reactions. Both isolates were evaluated for the cytotoxicity against six human cancer cell lines, only sorbicillfuran B (2) showed weak cytotoxicity against HL-60 cells with an IC50 value of 9.6 µM.
Subject(s)
Antineoplastic Agents/pharmacology , Heterocyclic Compounds/pharmacology , Penicillium/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HL-60 Cells , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/isolation & purification , Humans , Molecular Conformation , Structure-Activity RelationshipABSTRACT
Insufficient therapeutic strategies for acute kidney injury (AKI) necessitate precision therapy targeting its pathogenesis. This study reveals the new mechanism of the marine-derived anti-AKI agent, piericidin glycoside S14, targeting peroxiredoxin 1 (PRDX1). By binding to Cys83 of PRDX1 and augmenting its peroxidase activity, S14 alleviates kidney injury efficiently in Prdx1-overexpression (Prdx1-OE) mice. Besides, S14 also increases PRDX1 nuclear translocation and directly activates the Nrf2/HO-1/NQO1 pathway to inhibit ROS production. Due to the limited druggability of S14 with low bioavailability (2.6%) and poor renal distribution, a pH-sensitive kidney-targeting dodecanamine-chitosan nanoparticle system is constructed to load S14 for precise treatment of AKI. l-Serine conjugation to chitosan imparts specificity to kidney injury molecule-1 (Kim-1)-overexpressed cells. The developed S14-nanodrug exhibits higher therapeutic efficiency by improving the in vivo behavior of S14 significantly. By encapsulation with micelles, the AUC0ât , half-life time, and renal distribution of S14 increase 2.5-, 1.8-, and 3.1-fold, respectively. The main factors contributing to the improved druggability of S14 nanodrugs include the lower metabolic elimination rate and UDP-glycosyltransferase (UGT)-mediated biotransformation. In summary, this study identifies a new therapeutic target for the marine-derived anti-AKI agent while enhancing its ADME properties and druggability through nanotechnology, thereby driving advancements in marine drug development for AKI.
ABSTRACT
Butyrolactone I (BTL-I), a butenolide compound isolated from land or marine-derived fungi, has been reported to show diverse activities. To further study the pharmaceutical potential of BTL-I, transcriptome and bioinformatics analysis of BTL-I treated HepG2 cells were taken. BTL-I was revealed with lipid metabolism regulatory activity and confirmed by increasing the mRNA expression of related genes, such as LXRα and its target gene UGT1A1. However, the obvious chemical carcinogenesis of BTL-I was also disclosed. BTL-I could significantly increase the mRNA and protein levels of oncogenes such as CYP1A1. Molecular docking of BTL-I and its analogs were performed to understand the active or toxic effects. Although BTL-I showed attractive activities, enough attention must be paid to its adverse effects in its further development.
Subject(s)
Fungi , Lipid Metabolism , Molecular Docking Simulation , 4-Butyrolactone/pharmacologyABSTRACT
Converting lipid disturbances in response to energy oversupply into healthy lipid homeostasis is a promising therapy to alleviate hepatosteatosis. Our clinical studies found that a further elevation of triglyceride (TG) in obese patients with the body mass index (BMI) greater than 28 was accompanied by a further reduction of phosphatidylethanolamine (PE). Shorter survival and poor prognosis were shown for the patients with high TG and low PE levels. Liver X receptor alpha (LXRα) knockout mice aggravated high-fat diet (HFD)-induced obesity and lipid disorders, making the TG enrichment and the PE decrease more pronounced according to the liver lipidomics analysis. The RNA-seq from mice liver exhibited that these metabolism disorders were attributed to the decline of Atgl (encoding the TG metabolism enzyme ATGL) and Ept1 (encoding the PE synthesis enzyme EPT1) expression. Mechanistic studies uncovered that LXRα activated the ATGL and EPT1 gene via direct binding to a LXR response element (LXRE) in the promoter. Moreover, both the supplement of PE in statin or fibrate therapy, and the LXRα inducer (oridonin) ameliorated cellular lipid deposition and lipotoxicity. Altogether, restoration of lipid homeostasis of TG and PE via the LXRα-ATGL/EPT1 axis may be a potential approach for the management of hepatosteatosis and metabolic syndrome.
Subject(s)
Lipid Metabolism , Phosphatidylethanolamines , Mice , Animals , Liver X Receptors/genetics , Liver X Receptors/metabolism , Triglycerides/metabolism , Homeostasis/physiology , Lipid Metabolism/genetics , Obesity , Mice, KnockoutABSTRACT
Hepatosteatosis is characterized by abnormal accumulation of triglycerides (TG), leading to prolonged and chronic inflammatory infiltration. To date, there is still a lack of effective and economical therapies for hepatosteatosis. Oridonin (ORI) is a major bioactive component extracted from the traditional Chinese medicinal herb Rabdosia rubescens. In this paper, we showed that ORI exerted significant protective effects against hepatic steatosis, inflammation and fibrosis, which was dependent on LXRα signaling. It is reported that LXRα regulated lipid homeostasis between triglyceride (TG) and phosphatidylethanolamine (PE) by promoting ATGL and EPT1 expression. Therefore, we implemented the lipidomic strategy and luciferase reporter assay to verify that ORI contributed to the homeostasis of lipids via the regulation of the ATGL gene associated with TG hydrolysis and the EPT1 gene related to PE synthesis in a LXRα-dependent manner, and the results showed the TG reduction and PE elevation. In detail, hepatic TG overload and lipotoxicity were reversed after ORI treatment by modulating the ATGL and EPT1 genes, respectively. Taken together, the data provide mechanistic insights to explain the bioactivity of ORI in attenuating TG accumulation and cytotoxicity and introduce exciting opportunities for developing novel natural activators of the LXRα-ATGL/EPT1 axis for pharmacologically treating hepatosteatosis and metabolic disorders.
ABSTRACT
BACKGROUND AND PURPOSE: Oridonin (Ori) has been shown to protect against acute liver injury (ALI) induced by D-galactosamine (D-GalN) and lipopolysaccharide (LPS). Oxylipins are oxidation products of polyunsaturated fatty acids (PUFAs) and are key proinflammatory mediators. This study aimed to investigate the changes in oxylipins in the livers of mice with D-GalN/LPS-induced ALI and the effects of Ori on these changes. RESULTS: 54 oxylipins in liver tissues were identified and qualitatively and quantitatively analyzed by ultra-performance liquid chromatography-electrospray ionization triple quadrupole mass spectrometry (UPLC-QTRAP/MS/MS). The levels of 12-HETE, 12-HEPE, 14(S)-HDHA, PGE2, dihomo-γ-linolenic acid and 13-HOTrE in the liver were significantly increased in the D-GalN/LPS-induced ALI group compared with the control group, and the levels of EPA and 7-HDHA were significantly decreased. However, pretreatment with Ori dramatically decreased the levels of 12-HETE, 12-HEPE, 14(S)-HDHA, PGE2 and 13-HOTrE compared with those of the ALI group and induced 7-HDHA and 15-oxoETE. Moreover, Ori reduced the protein levels of COX-1, COX-2, ALOX5, ALOX12 and ALOX15 induced by D-GalN/LPS, indicating that Ori altered oxylipins through the COX and LOX pathways. CONCLUSIONS: These results suggest that the protective effect of Ori on ALI is partly mediated by affecting the oxylipin pathway.
Subject(s)
Chemical and Drug Induced Liver Injury/metabolism , Diterpenes, Kaurane/pharmacology , Galactosamine , Lipopolysaccharides , Liver/drug effects , Oxylipins/metabolism , Protective Agents/pharmacology , Animals , Arachidonate 12-Lipoxygenase/genetics , Arachidonate 12-Lipoxygenase/metabolism , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/metabolism , Chemical and Drug Induced Liver Injury/genetics , Cyclooxygenase 1/genetics , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Liver/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolismABSTRACT
Nuclear receptors (NRs) are a superfamily of transcription factors induced by ligands and also function as integrators of hormonal and nutritional signals. Among NRs, the liver X receptors (LXRs) and farnesoid X receptor (FXR) have been of significance as targets for the treatment of metabolic syndrome-related diseases. In recent years, natural products targeting LXRs and FXR have received remarkable interests as a valuable source of novel ligands encompassing diverse chemical structures and bioactive properties. This review aims to survey natural products, originating from terrestrial plants and microorganisms, marine organisms, and marine-derived microorganisms, which could influence LXRs and FXR. In the recent two decades (2000-2020), 261 natural products were discovered from natural resources such as LXRs/FXR modulators, 109 agonists and 38 antagonists targeting LXRs, and 72 agonists and 55 antagonists targeting FXR. The docking evaluation of desired natural products targeted LXRs/FXR is finally discussed. This comprehensive overview will provide a reference for future study of novel LXRs and FXR agonists and antagonists to target human diseases, and attract an increasing number of professional scholars majoring in pharmacy and biology with more in-depth discussion.
ABSTRACT
Reported as two antirenal cell carcinoma (RCC) drug candidates, marine-derived compounds piericidin A (PA) and glucopiericidin A (GPA) exhibit hepatotoxicity in renal carcinoma xenograft mice. Proteomics and transcriptomics reveal the hepatotoxicity related with cholesterol disposition since RCC is characterized by cholesterol accumulation. PA/GPA aggravate hepatotoxicity in high-cholesterol diet (HCD)-fed mice while exhibiting no toxicity in chow diet-fed mice. High cholesterol accumulation in liver is liver X receptor (LXR)-mediated cytochrome P450 family 7 subfamily a member 1 (CYP7A1) depression and low-density lipoprotein receptor (LDLR) activation. The farnesoid X nuclear receptor (FXR) is also depressed with a downregulated target gene OSTα. Different from PA directly combined with LXRα as an inhibitor, GPA exists as a prodrug in the liver and exerts toxic effects due to transformation into PA. Surface plasmon resonance (SPR) and docking results of 17 piericidins illustrate that glycosides exert no LXRα binding activity. A longer survival time of GPA-treated mice indicates that further exploration in anti-RCC drug research should focus on reducing glycosides transformed into PA and concentrating in the kidney tumor rather than the liver for lowering the risk of hepatotoxicity.
Subject(s)
Cholesterol, Dietary/adverse effects , Cholesterol/metabolism , Diet, High-Fat/adverse effects , Liver X Receptors/metabolism , Pericarditis/metabolism , Animals , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Pericarditis/chemically induced , Pericarditis/pathology , Structure-Activity Relationship , Tumor Cells, CulturedABSTRACT
Paeonia suffruticosa is an ornamental, edible, and medicinal plant. The ethanolic extracts of P. suffruticosa bud and flower were examined for their antioxidant, anti-photoaging, and phytochemical properties prior to chemometric analysis. The results showed that the bud ethanolic extract (BEE) and the flower (the early flowering stage) ethanolic extract (FEE) had better antioxidant activities, and significantly increased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and reduced the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the skin tissues. In total, 68 compounds, including 20 flavonoids, 15 phenolic derivatives, 12 terpenoids, 9 fatty acids, and 12 others were identified or tentatively identified by ultra-fast liquid chromatography quadrupole time-of-flight mass spectrometry (UFLC-Q-TOF-MS). Gallic acid, 1,2,3,4,6-O-pentagalloyl glucose, paeoniflorin, and oxypaeoniflorin were predominant compounds in the extracts. Taken together, P. suffruticosa flowers are a candidate for functional material in food and health related industries, and their optimal time to harvest is before the early flowering stage.