Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 630
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 83(1): 57-73.e9, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36608670

ABSTRACT

The TFE3 and MITF master transcription factors maintain metabolic homeostasis by regulating lysosomal, melanocytic, and autophagy genes. Previous studies posited that their cytosolic retention by 14-3-3, mediated by the Rag GTPases-mTORC1, was key for suppressing transcriptional activity in the presence of nutrients. Here, we demonstrate using mammalian cells that regulated protein stability plays a fundamental role in their control. Amino acids promote the recruitment of TFE3 and MITF to the lysosomal surface via the Rag GTPases, activating an evolutionarily conserved phospho-degron and leading to ubiquitination by CUL1ß-TrCP and degradation. Elucidation of the minimal functional degron revealed a conserved alpha-helix required for interaction with RagA, illuminating the molecular basis for a severe neurodevelopmental syndrome caused by missense mutations in TFE3 within the RagA-TFE3 interface. Additionally, the phospho-degron is recurrently lost in TFE3 genomic translocations that cause kidney cancer. Therefore, two divergent pathologies converge on the loss of protein stability regulation by nutrients.


Subject(s)
Amino Acids , Microphthalmia-Associated Transcription Factor , Animals , Mechanistic Target of Rapamycin Complex 1/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Amino Acids/metabolism , Nutrients , Protein Stability , Lysosomes/genetics , Lysosomes/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Mammals/metabolism
2.
Nature ; 608(7921): 209-216, 2022 08.
Article in English | MEDLINE | ID: mdl-35859173

ABSTRACT

Mechanistic target of rapamycin complex 1 (mTORC1) regulates cell growth and metabolism in response to multiple nutrients, including the essential amino acid leucine1. Recent work in cultured mammalian cells established the Sestrins as leucine-binding proteins that inhibit mTORC1 signalling during leucine deprivation2,3, but their role in the organismal response to dietary leucine remains elusive. Here we find that Sestrin-null flies (Sesn-/-) fail to inhibit mTORC1 or activate autophagy after acute leucine starvation and have impaired development and a shortened lifespan on a low-leucine diet. Knock-in flies expressing a leucine-binding-deficient Sestrin mutant (SesnL431E) have reduced, leucine-insensitive mTORC1 activity. Notably, we find that flies can discriminate between food with or without leucine, and preferentially feed and lay progeny on leucine-containing food. This preference depends on Sestrin and its capacity to bind leucine. Leucine regulates mTORC1 activity in glial cells, and knockdown of Sesn in these cells reduces the ability of flies to detect leucine-free food. Thus, nutrient sensing by mTORC1 is necessary for flies not only to adapt to, but also to detect, a diet deficient in an essential nutrient.


Subject(s)
Adaptation, Physiological , Diet , Drosophila Proteins , Drosophila melanogaster , Leucine , Sestrins , Adaptation, Physiological/genetics , Animal Feed , Animals , Autophagy , Diet/veterinary , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Food Preferences , Leucine/deficiency , Leucine/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mutant Proteins/genetics , Mutant Proteins/metabolism , Neuroglia/metabolism , Sestrins/deficiency , Sestrins/genetics , Sestrins/metabolism , Signal Transduction
3.
Nature ; 607(7919): 610-616, 2022 07.
Article in English | MEDLINE | ID: mdl-35831510

ABSTRACT

Mechanistic target of rapamycin complex 1 (mTORC1) controls growth by regulating anabolic and catabolic processes in response to environmental cues, including nutrients1,2. Amino acids signal to mTORC1 through the Rag GTPases, which are regulated by several protein complexes, including GATOR1 and GATOR2. GATOR2, which has five components (WDR24, MIOS, WDR59, SEH1L and SEC13), is required for amino acids to activate mTORC1 and interacts with the leucine and arginine sensors SESN2 and CASTOR1, respectively3-5. Despite this central role in nutrient sensing, GATOR2 remains mysterious as its subunit stoichiometry, biochemical function and structure are unknown. Here we used cryo-electron microscopy to determine the three-dimensional structure of the human GATOR2 complex. We found that GATOR2 adopts a large (1.1 MDa), two-fold symmetric, cage-like architecture, supported by an octagonal scaffold and decorated with eight pairs of WD40 ß-propellers. The scaffold contains two WDR24, four MIOS and two WDR59 subunits circularized via two distinct types of junction involving non-catalytic RING domains and α-solenoids. Integration of SEH1L and SEC13 into the scaffold through ß-propeller blade donation stabilizes the GATOR2 complex and reveals an evolutionary relationship to the nuclear pore and membrane-coating complexes6. The scaffold orients the WD40 ß-propeller dimers, which mediate interactions with SESN2, CASTOR1 and GATOR1. Our work reveals the structure of an essential component of the nutrient-sensing machinery and provides a foundation for understanding the function of GATOR2 within the mTORC1 pathway.


Subject(s)
Amino Acids , Cryoelectron Microscopy , Multiprotein Complexes , Nutrients , Protein Subunits , Humans , Amino Acids/metabolism , Arginine , Carrier Proteins , Leucine , Mechanistic Target of Rapamycin Complex 1/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Nutrients/metabolism , Protein Domains , Protein Subunits/chemistry , Protein Subunits/metabolism , Proteins
4.
Chem Rev ; 123(11): 7119-7192, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-36749705

ABSTRACT

Since severe global warming and related climate issues have been caused by the extensive utilization of fossil fuels, the vigorous development of renewable resources is needed, and transformation into stable chemical energy is required to overcome the detriment of their fluctuations as energy sources. As an environmentally friendly and efficient energy carrier, hydrogen can be employed in various industries and produced directly by renewable energy (called green hydrogen). Nevertheless, large-scale green hydrogen production by water electrolysis is prohibited by its uncompetitive cost caused by a high specific energy demand and electricity expenses, which can be overcome by enhancing the corresponding thermodynamics and kinetics at elevated working temperatures. In the present review, the effects of temperature variation are primarily introduced from the perspective of electrolysis cells. Following an increasing order of working temperature, multidimensional evaluations considering materials and structures, performance, degradation mechanisms and mitigation strategies as well as electrolysis in stacks and systems are presented based on elevated temperature alkaline electrolysis cells and polymer electrolyte membrane electrolysis cells (ET-AECs and ET-PEMECs), elevated temperature ionic conductors (ET-ICs), protonic ceramic electrolysis cells (PCECs) and solid oxide electrolysis cells (SOECs).

5.
Genes Dev ; 31(9): 916-926, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28546512

ABSTRACT

Wnt/ß-catenin signaling is activated when extracellular Wnt ligands bind Frizzled (FZD) receptors at the cell membrane. Wnts bind FZD cysteine-rich domains (CRDs) with high affinity through a palmitoylated N-terminal "thumb" and a disulfide-stabilized C-terminal "index finger," yet how these binding events trigger receptor activation and intracellular signaling remains unclear. Here we report the crystal structure of the Frizzled-4 (FZD4) CRD in complex with palmitoleic acid, which reveals a CRD tetramer consisting of two cross-braced CRD dimers. Each dimer is stabilized by interactions of one hydrophobic palmitoleic acid tail with two CRD palmitoleoyl-binding grooves oriented end to end, suggesting that the Wnt palmitoleoyl group stimulates CRD-CRD interaction. Using bioluminescence resonance energy transfer (BRET) in live cells, we show that WNT5A stimulates dimerization of membrane-anchored FZD4 CRDs and oligomerization of full-length FZD4, which requires the integrity of CRD palmitoleoyl-binding residues. These results suggest that FZD receptors may form signalosomes in response to Wnt binding through the CRDs and that the Wnt palmitoleoyl group is important in promoting these interactions. These results complement our understanding of lipoprotein receptor-related proteins 5 and 6 (LRP5/6), Dishevelled, and Axin signalosome assembly and provide a more complete model for Wnt signalosome assembly both intracellularly and at the membrane.


Subject(s)
Cysteine/chemistry , Fatty Acids, Monounsaturated/chemistry , Frizzled Receptors/chemistry , Wnt-5a Protein/metabolism , Crystallography, X-Ray , Cysteine/metabolism , Fatty Acids, Monounsaturated/metabolism , Frizzled Receptors/metabolism , HEK293 Cells , Humans , Models, Molecular , Protein Binding , Protein Multimerization , Protein Structure, Tertiary , Signal Transduction , Wnt Proteins/metabolism , beta Catenin/metabolism
6.
Clin Immunol ; 259: 109883, 2024 02.
Article in English | MEDLINE | ID: mdl-38147957

ABSTRACT

Abnormalities of regulatory T cells (Tregs) has been suggested in rheumatoid arthritis (RA), and Forkhead box P3 (Foxp3) is the key transcriptional factor of Tregs expression. However, the underlying molecular mechanism remains unclear. Here, we demonstrated peptidase inhibitor 16 (PI16) was significantly increased in the peripheral blood, synovial fluid, and synovial tissue from RA patients. PI16 transgenic mice (PI16Tg) aggravated arthritis severity partly through suppressing Foxp3 expression. Mechanistically, PI16 could interact with and stabilize Bmi-1 in Tregs via inhibiting K48-linked polyubiquitin of Bmi-1, which promotes the enrichment of repressive histone mark in Foxp3 promoter. Furthermore, Bmi-1 specific inhibitor PTC209 could restore Foxp3 expression and alleviate arthritis progression in PI16Tg mice, accompanied by increased recruitment of active histone mark in the promoter of Tregs. Our results suggest that PI16-Bmi-1 axis plays an important role in RA and other autoimmune diseases by suppressing Foxp3 expression in Tregs via Bmi-1-mediated histone modification.


Subject(s)
Arthritis, Rheumatoid , T-Lymphocytes, Regulatory , Animals , Humans , Mice , Forkhead Transcription Factors/metabolism , Protease Inhibitors , Synovial Membrane/metabolism , Ubiquitin
7.
Antimicrob Agents Chemother ; : e0008024, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709007

ABSTRACT

This study was conducted to compare the effectiveness of ceftriaxone with that of aqueous crystalline penicillin G in treating ocular syphilis. We conducted a retrospective study from 2010 to 2021. Syphilis patients were administered either ceftriaxone (2 g intravenously daily for 14 days) or aqueous crystalline penicillin G [4 million units (MU) intravenously every 4 h for 14 days] as therapeutic interventions. Subsequently, we utilized these two groups to assess the serological results, cerebrospinal fluid analysis, and visual acuity at time intervals spanning 3 to 6 months post-treatment. A total of 205 patients were included, with 34 assigned to the ceftriaxone group and 171 to the penicillin group. The median age of patients was 56 years, with an interquartile range of 49-62 years, and 137 of them (66.8%) were male. Between 3 and 6 months after treatment, 13 patients (38.2%) in the ceftriaxone group and 82 patients (48.0%) in the penicillin group demonstrated effective treatment based on the clinical and laboratory parameters. The crude odds ratio (OR) was 0.672 (95% confidence interval [CI]: 0.316-1.428, P = 0.301), indicating no significant difference in effectiveness between the two groups. Thirty patients (17.5%) in the penicillin group and six patients (17.6%) in the ceftriaxone group did not experience successful outcomes. Notably, no serious adverse effects were reported in both the groups. There was no significant difference in the effectiveness of ceftriaxone and aqueous crystalline penicillin G in treating ocular syphilis. The administration of ceftriaxone without requiring hospitalization presents a convenient and safe alternative treatment option for ocular syphilis.

8.
Small ; : e2402841, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693072

ABSTRACT

Developing lightweight composite with reversible switching between microwave (MW) absorption and electromagnetic interference (EMI) shielding is promising yet remains highly challenging due to the completely inconsistent attenuation mechanism for electromagnetic (EM) radiation. Here, a lightweight vanadium dioxide/expanded polymer microsphere composites foam (VO2/EPM) is designed and fabricated with porous structures and 3D VO2 interconnection, which possesses reversible switching function between MW absorption and EMI shielding under thermal stimulation. The VO2/EPM exhibits MW absorption with a broad effective absorption bandwidth of 3.25 GHz at room temperature (25 °C), while provides EMI shielding of 23.1 dB at moderately high temperature (100 °C). This reversible switching performance relies on the porous structure and tunability of electrical conductivity, complex permittivity, and impedance matching, which are substantially induced by the convertible crystal structure and electronic structure of VO2. Finite element simulation is employed to qualitatively investigate the change in interaction between EM waves and VO2/EPM before and after the phase transition. Moreover, the application of VO2/EPM is demonstrated with a reversible switching function in controlling wireless transmission on/off, showcasing its excellent cycling stability. This kind of smart material with a reversible switching function shows great potential in next-generation electronic devices.

9.
Sex Transm Infect ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902025

ABSTRACT

OBJECTIVES: This study aimed to describe the clinical features of neurosyphilis in Chinese patients in an attempt to find clinical features that are helpful for the early identification of neurosyphilis. METHODS: This retrospective study included people with syphilis who visited Shanghai Skin Disease Hospital between January 2010 and December 2020. Lumbar puncture was performed on those who met the inclusion and exclusion criteria. The diagnosis of neurosyphilis was based on clinical and laboratory findings. The parameters were analysed statistically. RESULTS: Of the 3524 patients with neurosyphilis, 2111 (59.9%) and 1413 (40.1%) were asymptomatic and symptomatic neurosyphilis, respectively. General paresis was the most common type of symptomatic neurosyphilis (46.8%). The clinical manifestations of symptomatic neurosyphilis include psychiatric and neurotic symptoms, among which general paresis predominantly presented as psychiatric symptoms such as affective (66.7%) and memory disorder (72.9%). Tabes dorsalis is often presented as neurotic symptoms. One hundred fifty patients (10.6%) with symptomatic neurosyphilis presented candy signs, a rare and specific neurosyphilis symptom that is common in general paresis. Girdle sensation was presented in 13 patients, mainly with tabes dorsalis, which had not been reported in previous studies. CONCLUSIONS: Notably, the candy sign is identified as a specific symptom of general paresis, while girdle sensations are highlighted as a particular symptom of tabes dorsalis. This is the largest study describing the clinical spectrum of neurosyphilis since the onset of the penicillin era and could help doctors learn more about the disease. A comprehensive description of the possible clinical manifestations of late symptomatic neurosyphilis, particularly highlighting rare symptoms, can identify suspicious patients and prevent diagnostic delays.

10.
Eur J Clin Microbiol Infect Dis ; 43(6): 1073-1080, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38557924

ABSTRACT

PURPOSE: The purpose of this study is to outline a complete picture of Jarisch-Herxheimer reaction (JHR) in the central nervous system among HIV-negative neurosyphilis patients. METHODS: A prospective study cohort of 772 cases with almost all stages of neurosyphilis depicted the features of JHR including occurrence rate, risk profiles, clinical manifestations, medical management and prognosis. RESULTS: The total occurrence rate of JHR was 9.3% (95% CI, 7.3-11.4%), including 4.1% (95% CI, 2.7-5.6%) with severe JHR. The reaction started 5 h after treatment initiation, peaked after 8 h, and subsided after 18 h. Patients with severe JHR experienced a longer recovery time (26 h). Patients with general paresis (OR = 6.825), ocular syphilis (OR = 3.974), pleocytosis (OR = 2.426), or a high CSF-VDRL titre (per log2 titre increase, OR = 2.235) were more likely to experience JHR. Patients with general paresis had an 11.759-fold increased risk of severe JHR. Worsening symptoms included cognitive impairment, mania, nonsense speech, and dysphoria, while symptoms of hallucination, urination disorder, seizures, myoclonus, or aphasia appeared as new-onset symptoms. Neurosyphilis treatment did not need to be interrupted in most patients with JHR and could be reinstated in patients with seizures under supportive medication when JHR subsided. CONCLUSION: Severe JHR displayed a 4.1% occurrence rate and clinicians should pay particular attention to patients at a higher risk of JHR. The neurosyphilis treatment regime can be restarted under intensive observation for patients with severe JHR and, if necessary, supportive medication should be initiated and continued until the end of therapy.


Subject(s)
Anti-Bacterial Agents , Neurosyphilis , Humans , Neurosyphilis/drug therapy , Neurosyphilis/complications , Male , Prospective Studies , Middle Aged , Female , Adult , Anti-Bacterial Agents/adverse effects , Anti-Bacterial Agents/therapeutic use , Aged , Risk Factors , Prognosis
11.
Br J Nutr ; 131(8): 1298-1307, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38098370

ABSTRACT

This study aimed to assess how Bacillus subtilis and Enterococcus faecium co-fermented feed (FF) affects the antioxidant capacity, muscle fibre types and muscle lipid profiles of finishing pigs. In this study, a total of 144 Duroc × Berkshire × Jiaxing Black finishing pigs were randomly assigned into three groups with four replicates (twelve pigs per replication). The three treatments were a basal diet (0 % FF), basal diet + 5 % FF and basal diet + 10 % FF, respectively. The experiment lasted 38 d after 4 d of acclimation. The study revealed that 10 % FF significantly increased the activity of superoxide dismutase (SOD) and catalase (CAT) compared with 0 % FF group, with mRNA levels of up-regulated antioxidant-related genes (GPX1, SOD1, SOD2 and CAT) in 10 % FF group. 10 % FF also significantly up-regulated the percentage of slow-twitch fibre and the mRNA expression of MyHC I, MyHC IIa and MyHC IIx, and slow MyHC protein expression while reducing MyHC IIb mRNA expression. Lipidomics analysis showed that 5 % FF and 10 % FF altered lipid profiles in longissimus thoracis. 10 % FF particularly led to an increase in the percentage of TAG. The Pearson correlation analysis indicated that certain molecular markers such as phosphatidic acid (PA) (49:4), Hex2Cer (d50:6), cardiolipin (CL) (72:8) and phosphatidylcholine (PC) (33:0e) could be used to indicate the characteristics of muscle fibres and were closely related to meat quality. Together, our findings suggest that 10 % FF improved antioxidant capacity, enhanced slow-twitch fibre percentage and altered muscle lipid profiles in finishing pigs.


Subject(s)
Antioxidants , Enterococcus faecium , Swine , Animals , Antioxidants/metabolism , Bacillus subtilis/genetics , Enterococcus faecium/genetics , Muscle Fibers, Skeletal/metabolism , RNA, Messenger/metabolism , Lipids
12.
Epidemiol Infect ; 152: e21, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38224151

ABSTRACT

Accurately predicting neurosyphilis prior to a lumbar puncture (LP) is critical for the prompt management of neurosyphilis. However, a valid and reliable model for this purpose is still lacking. This study aimed to develop a nomogram for the accurate identification of neurosyphilis in patients with syphilis. The training cohort included 9,504 syphilis patients who underwent initial neurosyphilis evaluation between 2009 and 2020, while the validation cohort comprised 526 patients whose data were prospectively collected from January 2021 to September 2021. Neurosyphilis was observed in 35.8% (3,400/9,504) of the training cohort and 37.6% (198/526) of the validation cohort. The nomogram incorporated factors such as age, male gender, neurological and psychiatric symptoms, serum RPR, a mucous plaque of the larynx and nose, a history of other STD infections, and co-diabetes. The model exhibited good performance with concordance indexes of 0.84 (95% CI, 0.83-0.85) and 0.82 (95% CI, 0.78-0.86) in the training and validation cohorts, respectively, along with well-fitted calibration curves. This study developed a precise nomogram to predict neurosyphilis risk in syphilis patients, with potential implications for early detection prior to an LP.


Subject(s)
HIV Infections , Neurosyphilis , Syphilis , Humans , Male , Neurosyphilis/diagnosis , Neurosyphilis/epidemiology , Spinal Puncture , Risk Assessment
13.
Nature ; 561(7724): E44, 2018 09.
Article in English | MEDLINE | ID: mdl-29930353

ABSTRACT

In the PDF version of this Article, owing to a typesetting error, an incorrect figure was used for Extended Data Fig. 5; the correct figure was used in the HTML version. This has been corrected online.

14.
Nature ; 558(7711): 553-558, 2018 06.
Article in English | MEDLINE | ID: mdl-29899450

ABSTRACT

G-protein-coupled receptors comprise the largest family of mammalian transmembrane receptors. They mediate numerous cellular pathways by coupling with downstream signalling transducers, including the hetrotrimeric G proteins Gs (stimulatory) and Gi (inhibitory) and several arrestin proteins. The structural mechanisms that define how G-protein-coupled receptors selectively couple to a specific type of G protein or arrestin remain unknown. Here, using cryo-electron microscopy, we show that the major interactions between activated rhodopsin and Gi are mediated by the C-terminal helix of the Gi α-subunit, which is wedged into the cytoplasmic cavity of the transmembrane helix bundle and directly contacts the amino terminus of helix 8 of rhodopsin. Structural comparisons of inactive, Gi-bound and arrestin-bound forms of rhodopsin with inactive and Gs-bound forms of the ß2-adrenergic receptor provide a foundation to understand the unique structural signatures that are associated with the recognition of Gs, Gi and arrestin by activated G-protein-coupled receptors.


Subject(s)
Cryoelectron Microscopy , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/ultrastructure , Rhodopsin/metabolism , Rhodopsin/ultrastructure , Arrestin/chemistry , Arrestin/metabolism , Binding Sites , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gs/chemistry , GTP-Binding Protein alpha Subunits, Gs/metabolism , Humans , Models, Molecular , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/metabolism , Rhodopsin/chemistry , Signal Transduction , Substrate Specificity
15.
Ecotoxicol Environ Saf ; 278: 116405, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38696874

ABSTRACT

Cadmium (Cd) exposure is considered as non-infectious stressor to human and animal health. Recent studies suggest that the immunotoxicity of low dose Cd is not directly apparent, but disrupts the immune responses when infected with some bacteria or virus. But how Cd alters the adaptive immunity organ and cells remains unclear. In this study, we applied lipopolysaccharide (LPS, infectious stressor) to induced inflammation in spleen tissues and T cells, and investigated the effects after Cd exposure and the underlying mechanism. Cd exposure promoted LPS-induced the expressions of the inflammatory factors, induced abnormal initiation of autophagy, but blocked autophagic flux. The effects Cd exposure under LPS activation were reversed by the autophagy promoter Rapamycin. Under LPS activation conditions, Cd also induced oxidative stress by increasing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and reducing total antioxidant capacity (T-AOC) activity. The increased superoxide dismutase (SOD) activity after Cd exposure might be a negative feedback or passive adaptive regulation of oxidative stress. Cd-increased autophagic flux inhibition and TNF-α expression were reversed by ROS scavenger α-tocopherol (TCP). Furthermore, under LPS activation condition, Cd promoted activation of toll-like receptor 4 (TLR4)/IκBα/NFκ-B signaling pathway and increased TLR4 protein stability, which were abolished by the pretreatment of Rapamycin. The present study confirmed that, by increasing ROS-mediated inhibiting autophagic degradation of TLR4, Cd promoted LPS-induced inflammation in spleen T cells. This study identified the mechanism of autophagy in Cd-aggravated immunotoxicity under infectious stress, which could arouse public attention to synergistic toxicity of Cd and bacterial or virus infection.


Subject(s)
Autophagy , Cadmium , Inflammation , Lipopolysaccharides , NF-kappa B , Oxidative Stress , Reactive Oxygen Species , Signal Transduction , Toll-Like Receptor 4 , Cadmium/toxicity , Autophagy/drug effects , Toll-Like Receptor 4/metabolism , Lipopolysaccharides/toxicity , Reactive Oxygen Species/metabolism , Animals , NF-kappa B/metabolism , Signal Transduction/drug effects , Inflammation/chemically induced , Oxidative Stress/drug effects , Mice , Spleen/drug effects , NF-KappaB Inhibitor alpha/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Male
16.
J Integr Neurosci ; 23(4): 87, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38682221

ABSTRACT

Ischemic stroke (IS) remains a serious threat to human health. Neuroinflammatory response is an important pathophysiological process after IS. Circular RNAs (circRNAs), a member of the non-coding RNA family, are highly expressed in the central nervous system and widely involved in regulating physiological and pathophysiological processes. This study reviews the current evidence on neuroinflammatory responses, the role of circRNAs in IS and their potential mechanisms in regulating inflammatory cells, and inflammatory factors affecting IS damage. This review lays a foundation for future clinical application of circRNAs as novel biomarkers and therapeutic targets.


Subject(s)
Ischemic Stroke , Neuroinflammatory Diseases , RNA, Circular , RNA, Circular/metabolism , Humans , Ischemic Stroke/metabolism , Ischemic Stroke/genetics , Neuroinflammatory Diseases/metabolism , Animals , Brain Ischemia/metabolism
17.
Plant Dis ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416046

ABSTRACT

Forever Summer Hydrangea (Hydrangea macrophylla) is a common flowering plant in the Yangtze River Valley area of China, and it is widely cultivated globally (Chen et al. 2015). In July 2023, H. macrophylla leaves exhibiting visible diseased lesions were reported in a nursery in Wuhu, Anhui Province, China. The incidence reached 40% in a 0.2 ha area. The primary disease symptom was multiple irregular necrotic spots (0.5 to 1 mm in diameter) appearing on the leaves. These spots on the leaves were faded yellow around the perimeter and grayish brown in the center.). 15 leaf samples were sterilized with 75% alcohol and rinsed three times in sterile distilled water, then transferred to antibiotic-added potato dextrose agar (PDA) for incubation at 27°C. The colonies were fluffy, flocculent, or hairy, dark green, gray-green to gray-brown in color, and spreading or protruding punctate with a colorless halo on PDA. The conidiophores were brown to dark brown, smooth or rough surface, mostly unbranched, clearly differentiated, erect or curved. The conidia displayed a light brown to brown hue, lemon shape, fusiform, elongated ellipsoid or others with obvious spore markings and spore umbilicus. Genomic DNA was extracted from fungal colonies on infected leaves of three collections separately (Braun et al. 2003) and the internal transcribed spacer regions (ITS), actin (ACT) genes and partial translation elongation factor-l-alpha (EF) were amplified and sequenced using the primers ITS1/4 (Yin et al. 2012), ACT-512F/ACT-783R and EF 1-728F/986R (Carbone and Kohn 1999), respectively. DNA sequences of isolates were identical and deposited in GenBank (accession no. OR362754 for ITS, OR611929 for ACT and PP209106 for EF). The consensus sequences from ITS, EF and ACT showed 100%, 98.98% and 100% identical to Cladosporium strains (accession no. OQ186140.1, MT154169.1 and OL322092.1), respectively. To confirm the pathogenicity of the isolates, hydrangeas were planted in 15-cm pots containing commercial potting mix (one plant/pot). Three healthy plants were inoculated at the five to eight leaf stage by spraying 50 µL of the isolate conidial suspension (4 × 106 spores/mL) on healthy leaves. Three plants treated with sterile distilled water were used as controls. After inoculation, all plants were placed in a humidity chamber (>95% relative humidity, 26°C) for 48 h and then transferred to a greenhouse at 22/27°C. All inoculated leaves exhibited symptoms similar to those observed in the nursery 10 days after inoculation, while no symptoms were observed for control leaves. The fungus was re-isolated and confirmed to be C. tenuissimum. Based on the above morphological characterization and molecular identification, the causal agent for this leaf spot disease was identified as C. tenuissimum. Although C. tenuissimum has been reported to cause disease on H. paniculata in northern China (Li et al.2021), this is the first time that C. tenuissimum has been found on H. macrophylla in southern China. This new disease of H. macrophylla caused by C. tenuissimum is a threat to urban greening and is worth further investigation.

18.
J Gambl Stud ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724824

ABSTRACT

Computer technology has long been touted as a means of increasing the effectiveness of voluntary self-exclusion schemes - especially in terms of relieving gaming venue staff of the task of manually identifying and verifying the status of new customers. This paper reports on the government-led implementation of facial recognition technology as part of an automated self-exclusion program in the city of Adelaide in South Australia-one of the first jurisdiction-wide enforcements of this controversial technology in small venue gambling. Drawing on stakeholder interviews, site visits and documentary analysis over a two year period, the paper contrasts initial claims that facial recognition offered a straightforward and benign improvement to the efficiency of the city's long-running self-excluded gambler program, with subsequent concerns that the new technology was associated with heightened inconsistencies, inefficiencies and uncertainties. As such, the paper contends that regardless of the enthusiasms of government, tech industry and gaming lobby, facial recognition does not offer a ready 'technical fix' to problem gambling. The South Australian case illustrates how this technology does not appear to better address the core issues underpinning problem gambling, and/or substantially improve conditions for problem gamblers to refrain from gambling. As such, it is concluded that the gambling sector needs to pay close attention to the practical outcomes arising from initial cases such as this, and resist industry pressures for the wider replication of this technology in other jurisdictions.

19.
Int J Mol Sci ; 25(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38791582

ABSTRACT

A novel nanotechnology-based drug delivery system (DDS) targeted at pancreatic cancer cells was developed, characterized, and tested. The system consisted of liposomes as carriers, an anticancer drug (paclitaxel) as a chemotherapeutic agent, and a modified synthetic somatostatin analog, 5-pentacarbonyl-octreotide, a ligand for somatostatin receptor 2 (SSTR2), as a targeting moiety for pancreatic cancer. The cellular internalization, cytotoxicity, and antitumor activity of the DDS were tested in vitro using human pancreatic ductal adenocarcinoma (PDAC) cells with different expressions of the targeted SSTR2 receptors, and in vivo on immunodeficient mice bearing human PDAC xenografts. The targeted drug delivery system containing paclitaxel exhibited significantly enhanced cytotoxicity compared to non-targeted DDS, and this efficacy was directly related to the levels of SSTR2 expression. It was found that octreotide-targeted DDS proved exceptionally effective in suppressing the growth of PDAC tumors. This study underscores the potential of octreotide-targeted liposomal delivery systems to enhance the therapeutic outcomes for PDAC compared with non-targeted liposomal DDS and Paclitaxel-Cremophor® EL, suggesting a promising avenue for future cancer therapy innovations.


Subject(s)
Drug Delivery Systems , Liposomes , Octreotide , Paclitaxel , Pancreatic Neoplasms , Receptors, Somatostatin , Xenograft Model Antitumor Assays , Animals , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Receptors, Somatostatin/metabolism , Mice , Cell Line, Tumor , Paclitaxel/pharmacology , Paclitaxel/administration & dosage , Paclitaxel/therapeutic use , Liposomes/chemistry , Drug Delivery Systems/methods , Octreotide/administration & dosage , Octreotide/pharmacology , Somatostatin/analogs & derivatives , Nanotechnology/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology
20.
J Neuroinflammation ; 20(1): 260, 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37951917

ABSTRACT

BACKGROUND: Emerging evidence has shown that myeloid cells that infiltrate into the peri-infarct region may influence the progression of ischemic stroke by interacting with microglia. Properdin, which is typically secreted by immune cells such as neutrophils, monocytes, and T cells, has been found to possess damage-associated molecular patterns (DAMPs) properties and can perform functions unrelated to the complement pathway. However, the role of properdin in modulating microglia-mediated post-stroke neuroinflammation remains unclear. METHODS: Global and conditional (myeloid-specific) properdin-knockout mice were subjected to transient middle cerebral artery occlusion (tMCAO). Histopathological and behavioral tests were performed to assess ischemic brain injury in mice. Single-cell RNA sequencing and immunofluorescence staining were applied to explore the source and the expression level of properdin. The transcriptomic profile of properdin-activated primary microglia was depicted by transcriptome sequencing. Lentivirus was used for macrophage-inducible C-type lectin (Mincle) silencing in microglia. Conditioned medium from primary microglia was administered to primary cortex neurons to determine the neurotoxicity of microglia. A series of cellular and molecular biological techniques were used to evaluate the proinflammatory response, neuronal death, protein-protein interactions, and related signaling pathways, etc. RESULTS: The level of properdin was significantly increased, and brain-infiltrating neutrophils and macrophages were the main sources of properdin in the ischemic brain. Global and conditional myeloid knockout of properdin attenuated microglial overactivation and inflammatory responses at the acute stage of tMCAO in mice. Accordingly, treatment with recombinant properdin enhanced the production of proinflammatory cytokines and augmented microglia-potentiated neuronal death in primary culture. Mechanistically, recombinant properdin served as a novel ligand that activated Mincle receptors on microglia and downstream pathways to drive primary microglia-induced inflammatory responses. Intriguingly, properdin can directly bind to the microglial Mincle receptor to exert the above effects, while Mincle knockdown limits properdin-mediated microglial inflammation. CONCLUSION: Properdin is a new medium by which infiltrating peripheral myeloid cells communicate with microglia, further activate microglia, and exacerbate brain injury in the ischemic brain, suggesting that targeted disruption of the interaction between properdin and Mincle on microglia or inhibition of their downstream signaling may improve the prognosis of ischemic stroke.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , Mice , Animals , Microglia/metabolism , Ischemic Stroke/metabolism , Properdin/metabolism , Properdin/pharmacology , Neuroinflammatory Diseases , Macrophages/metabolism , Infarction, Middle Cerebral Artery/pathology , Brain Injuries/metabolism , Brain Ischemia/metabolism , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL