Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Int J Mol Sci ; 21(7)2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32260164

ABSTRACT

Air pollution is one of the world's leading environmental causes of death. The epidemiological relationship between outdoor air pollution and the onset of health diseases associated with death is now well established. Relevant toxicological proofs are now dissecting the molecular processes that cause inflammation, reactive species generation, and DNA damage. In addition, new data are pointing out the role of airborne particulates in the modulation of genes and microRNAs potentially involved in the onset of human diseases. In the present review we collect the relevant findings on airborne particulates of one of the biggest hot spots of air pollution in Europe (i.e., the Po Valley), in the largest urban area of this region, Milan. The different aerodynamic fractions are discussed separately with a specific focus on fine and ultrafine particles that are now the main focus of several studies. Results are compared with more recent international findings. Possible future perspectives of research are proposed to create a new discussion among scientists working on the toxicological effects of airborne particles.


Subject(s)
Air Pollutants/toxicity , Inflammation/epidemiology , Particulate Matter/toxicity , DNA Damage , Environmental Monitoring , Humans , In Vitro Techniques , Inflammation/chemically induced , Italy , Oxidative Stress , Particle Size
2.
Int J Mol Sci ; 20(20)2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31600872

ABSTRACT

Greater Cairo (Egypt) is a megalopolis where the studies of the air pollution events are of extremely high relevance, for the geographical-climatological aspects, the anthropogenic emissions and the health impact. While preliminary studies on the particulate matter (PM) chemical composition in Greater Cairo have been performed, no data are yet available on the PM's toxicity. In this work, the in vitro toxicity of the fine PM (PM2.5) sampled in an urban area of Greater Cairo during 2017-2018 was studied. The PM2.5 samples collected during spring, summer, autumn and winter were preliminary characterized to determine the concentrations of ionic species, elements and organic PM (Polycyclic Aromatic Hydrocarbons, PAHs). After particle extraction from filters, the cytotoxic and pro-inflammatory effects were evaluated in human lung A549 cells. The results showed that particles collected during the colder seasons mainly induced the xenobiotic metabolizing system and the consequent antioxidant and pro-inflammatory cytokine release responses. Biological events positively correlated to PAHs and metals representative of a combustion-derived pollution. PM2.5 from the warmer seasons displayed a direct effect on cell cycle progression, suggesting possible genotoxic effects. In conclusion, a correlation between the biological effects and PM2.5 physico-chemical properties in the area of study might be useful for planning future strategies aiming to improve air quality and lower health hazards.


Subject(s)
Air Pollutants/analysis , Air Pollution , Environmental Monitoring , Particulate Matter/analysis , Seasons , Biomarkers , Cell Cycle , Cell Survival , Climate , Egypt , Humans , Inflammation Mediators , Oxidative Stress , Particle Size , Reactive Oxygen Species/metabolism
3.
BMC Genomics ; 19(1): 302, 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-29703138

ABSTRACT

BACKGROUND: Emissions from diesel vehicles and biomass burning are the principal sources of primary ultrafine particles (UFP). The exposure to UFP has been associated to cardiovascular and pulmonary diseases, including lung cancer. Although many aspects of the toxicology of ambient particulate matter (PM) have been unraveled, the molecular mechanisms activated in human cells by the exposure to UFP are still poorly understood. Here, we present an RNA-seq time-course experiment (five time point after single dose exposure) used to investigate the differential and temporal changes induced in the gene expression of human bronchial epithelial cells (BEAS-2B) by the exposure to UFP generated from diesel and biomass combustion. A combination of different bioinformatics tools (EdgeR, next-maSigPro and reactome FI app-Cytoscape and prioritization strategies) facilitated the analyses the temporal transcriptional pattern, functional gene set enrichment and gene networks related to cellular response to UFP particles. RESULTS: The bioinformatics analysis of transcriptional data reveals that the two different UFP induce, since the earliest time points, different transcriptional dynamics resulting in the activation of specific genes. The functional enrichment of differentially expressed genes indicates that the exposure to diesel UFP induces the activation of genes involved in TNFα signaling via NF-kB and inflammatory response, and hypoxia. Conversely, the exposure to ultrafine particles from biomass determines less distinct modifications of the gene expression profiles. Diesel UFP exposure induces the secretion of biomarkers associated to inflammation (CCXL2, EPGN, GREM1, IL1A, IL1B, IL6, IL24, EREG, VEGF) and transcription factors (as NFE2L2, MAFF, HES1, FOSL1, TGIF1) relevant for cardiovascular and lung disease. By means of network reconstruction, four genes (STAT3, HIF1a, NFKB1, KRAS) have emerged as major regulators of transcriptional response of bronchial epithelial cells exposed to diesel exhaust. CONCLUSIONS: Overall, this work highlights modifications of the transcriptional landscape in human bronchial cells exposed to UFP and sheds new lights on possible mechanisms by means of which UFP acts as a carcinogen and harmful factor for human health.


Subject(s)
Biomass , Bronchi/metabolism , Epithelial Cells/metabolism , Gene Expression Profiling , Gene Expression Regulation/drug effects , Particulate Matter/adverse effects , Vehicle Emissions/poisoning , Bronchi/cytology , Bronchi/drug effects , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/drug effects , Humans , Transcriptome
4.
J Appl Toxicol ; 34(11): 1247-55, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25244046

ABSTRACT

Despite the well-established link between particulate vehicle emissions and adverse health effects, the biological effects produced by ultrafine particles generated from fuel combustion need to be investigated. The biological impact of nano-sized organic carbon particles in the size range 3-7 nm, obtained from an engine fuelled with a standard diesel and four diesel fuels doped with additives of commercial interest is reported. Our data showed that the number of particles < 10 nm is to a very small extent reduced by diesel particle filters, despite its ability to trap micrometric and submicrometric particulates, and that there is a correlation between the additives used and the chemical characteristics of the nanoparticles sampled. The results show that the different nano-sized organic carbon particles induce cytotoxic and proinflammatory effects on the in vitro systems A549 (epithelial cells) and BEAS-2B (bronchial cells). All the fuels tested are able to induce the release of proinflammatory interleukins 8 and 6; moreover, the IC50 values show that the additives can increase the toxic potential of particles 10 times. Further analyses are therefore needed to better define the potential impact of organic ultrafine particles on human health.


Subject(s)
Gasoline/toxicity , Nanoparticles/toxicity , Particulate Matter/toxicity , Vehicle Emissions/toxicity , Cell Line, Tumor , Cell Survival/drug effects , Humans , Inhibitory Concentration 50 , Interleukin-6/metabolism , Particle Size
5.
Environ Int ; 183: 108420, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38199131

ABSTRACT

The production and use of nanomaterials (NMs) has increased over the last decades posing relevant questions on their risk after release and exposure of the population or sub-populations. In this context, the safe and sustainable by design (SSbD) approach framework requires to assess the potential hazard connected with intrinsic properties of the material along the whole life cycle of the NM and/or of the nano enabled products. Moreover, in the last years, the use of new advanced methodologies (NAMs) has increasingly gained attention for the use of alternative methods in obtaining relevant information on NMs hazard and risk. Considering the SSbD and the NAMs frameworks, within the ASINA H2020 project, we developed new NAMs devoted at improving the hazard and risk definition of different Ag and TiO2 NPs. The NAMs are developed considering two air liquid interface exposure systems, the Vitrocell Cloud-α and the Cultex Compact module and the relevant steps to obtain reproducible exposures are described. The new NAMs build on the integration of environmental monitoring campaigns at nano-coating production sites, allowing the quantification by the multiple-path particle dosimetry (MPPD) model of the expected lung deposited dose in occupational settings. Starting from this information, laboratory exposures to the aerosolized NPs are performed by using air liquid interface exposure equipment and human alveolar cells (epithelial cells and macrophages), replicating the doses of exposure estimated in workers by MPPD. Preliminary results on cell viability and inflammatory responses are reported. The proposed NAMs may represent possible future reference procedures for assessing the NPs inhalation toxicology, supporting risk assessment at real exposure doses.


Subject(s)
Inhalation Exposure , Nanostructures , Humans , Inhalation Exposure/analysis , Lung , Epithelial Cells , Risk Assessment
6.
Sci Total Environ ; 952: 175979, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39233085

ABSTRACT

Airborne pathogens represent a topic of scientific relevance, especially considering the recent COVID-19 pandemic. Air pollution, and particulate matter (PM) in particular, has been proposed as a possible risk factor for the onset and spread of pathogen-driven respiratory diseases. Regarding SARS-CoV-2 infection, exposure to fine PM (PM2.5, particles with an aerodynamic diameter < 2.5 µm) has been associated with increased incidence of the COVID-19 disease. To provide useful insights into the mechanisms through which PM might be involved in infection, we exposed human lung cells (A549) to PM2.5 and SARS-CoV-2, to evaluate the toxicological properties and the molecular pathways activated when airborne particles are combined with viral particles. Winter PM2.5 was collected in a metropolitan urban area and its physico-chemical composition was analyzed. A549 cells were exposed to SARS-CoV-2 concomitantly or after pre-treatment with PM2.5. Inflammation, oxidative stress and xenobiotic metabolism were the main pathways investigated. Results showed that after 72 h of exposure PM2.5 significantly increased the expression of the angiotensin-converting enzyme 2 (ACE2) receptor, which is one of the keys used by the virus to infect host cells. We also analyzed the endosomal route in the process of internalization, by studying the expression of RAB5 and RAB7. The results show that in cells pre-activated with PM and then exposed to SARS-CoV-2, RAB5 expression is significantly increased. The activation of the inflammatory process was then studied. Our findings show an increase of pro-inflammatory markers (NF-kB and IL-8) in cells pre-activated with PM for 72 h and subsequently exposed to the virus for a further 24 h, further demonstrating that the interaction between PM and SARS-CoV-2 determines the severity of the inflammatory responses in lung epithelial cells. In conclusion, the study provides mechanistic biological evidence of PM contribution to the onset and progression of viral respiratory diseases in exposed populations.

7.
Environ Pollut ; 358: 124471, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38950846

ABSTRACT

Associations between indoor air pollution from fine particulate matter (PM with aerodynamic diameter dp < 2.5 µm) and human health are poorly understood. Here, we analyse the concentration-response curves for fine and ultrafine PM, the gene expression, and the methylation patterns in human bronchial epithelial cells (BEAS-2B) exposed at the air-liquid interface (ALI) within a classroom in downtown Rome. Our results document the upregulation of aryl hydrocarbon receptor (AhR) and genes associated with xenobiotic metabolism (CYP1A1 and CYP1B1) in response to single exposure of cells to fresh urban aerosols at low fine PM mass concentrations within the classroom. This is evidenced by concentrations of ultrafine particles (UFPs, dp < 0.1 µm), polycyclic aromatic hydrocarbons (PAH), and ratios of black carbon (BC) to organic aerosol (OA). Additionally, an interleukin 18 (IL-18) down-regulation was found during periods of high human occupancy. Despite the observed gene expression dysregulation, no changes were detected in the methylation levels of the promoter regions of these genes, indicating that the altered gene expression is not linked to changes in DNA methylation and suggesting the involvement of another epigenetic mechanism in the gene regulation. Gene expression changes at low exposure doses have been previously reported. Here, we add the possibility that lung epithelial cells, when singly exposed to real environmental concentrations of fine PM that translate into ultra-low doses of treatment, may undergo epigenetic alteration in the expression of genes related to xenobiotic metabolism. Our findings provide a perspective for future indoor air quality regulations. We underscore the potential role of indoor UFPs as carriers of toxic molecules with low-pressure weather conditions, when rainfall and strong winds may favour low levels of fine PM.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Bronchi , DNA Methylation , Epithelial Cells , Particulate Matter , Humans , Epithelial Cells/metabolism , Air Pollutants/toxicity , Bronchi/cytology , Promoter Regions, Genetic , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Polycyclic Aromatic Hydrocarbons/toxicity , Gene Expression/drug effects , Cytochrome P-450 CYP1B1/genetics , Cell Line
8.
Part Fibre Toxicol ; 10: 63, 2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24354623

ABSTRACT

BACKGROUND: This study explores and characterizes cell cycle alterations induced by urban PM2.5 in the human epithelial cell line BEAS-2B, and elucidates possible mechanisms involved. METHODS: The cells were exposed to a low dose (7.5 µg/cm(2)) of Milan winter PM2.5 for different time points, and the cell cycle progression was analyzed by fluorescent microscopy and flow cytometry. Activation of proteins involved in cell cycle control was investigated by Western blotting and DNA damage by (32)P-postlabelling, immunostaining and comet assay. The formation of reactive oxygen species (ROS) was quantified by flow cytometry. The role of PM organic fraction versus washed PM on the cell cycle alterations was also examined. Finally, the molecular pathways activated were further examined using specific inhibitors. RESULTS: Winter PM2.5 induced marked cell cycle alteration already after 3 h of exposure, represented by an increased number of cells (transient arrest) in G2. This effect was associated with an increased phosphorylation of Chk2, while no changes in p53 phosphorylation were observed at this time point. The increase in G2 was followed by a transient arrest in the metaphase/anaphase transition point (10 h), which was associated with the presence of severe mitotic spindle aberrations. The metaphase/anaphase delay was apparently followed by mitotic slippage at 24 h, resulting in an increased number of tetraploid G1 cells and cells with micronuclei (MN), and by apoptosis at 40 h. Winter PM2.5 increased the level of ROS at 2 h and DNA damage (8-oxodG, single- and double stand breaks) was detected after 3 h of exposure. The PM organic fraction caused a similar G2/M arrest and augmented ROS formation, while washed PM had no such effects. DNA adducts were detected after 24 h. Both PM-induced DNA damage and G2 arrest were inhibited by the addition of antioxidants and α-naphthoflavone, suggesting the involvement of ROS and reactive electrophilic metabolites formed via a P450-dependent reaction. CONCLUSIONS: Milan winter PM2.5 rapidly induces severe cell cycle alterations, resulting in increased frequency of cells with double nuclei and MN. This effect is related to the metabolic activation of PM2.5 organic chemicals, which cause damages to DNA and spindle apparatus.


Subject(s)
Air Pollutants/toxicity , Bronchi/drug effects , Cell Cycle/drug effects , DNA Damage , Epithelial Cells/drug effects , Particulate Matter/toxicity , Blotting, Western , Bronchi/metabolism , Bronchi/pathology , Cell Cycle Checkpoints/drug effects , Cell Line , Epithelial Cells/metabolism , Epithelial Cells/pathology , Flow Cytometry , Humans , Immunohistochemistry , Italy , Micronuclei, Chromosome-Defective/chemically induced , Microscopy, Fluorescence , Mitosis/drug effects , Particle Size , Reactive Oxygen Species/metabolism , Seasons , Spindle Apparatus/drug effects , Spindle Apparatus/metabolism , Tetraploidy , Urbanization
9.
Toxics ; 11(9)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37755782

ABSTRACT

Air is an essential natural resource for life [...].

10.
Toxics ; 11(2)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36851069

ABSTRACT

Silver nanoparticles (Ag NPs) are among the most widely used metal-based nanomaterials (NMs) and their applications in different products, also as antibacterial additives, are increasing. In the present manuscript, according to an adverse outcome pathway (AOP) approach, we tested two safe-by-design (SbD) newly developed Ag NPs coated with hydroxyethyl cellulose (HEC), namely AgHEC powder and AgHEC solution. These novel Ag NPs were compared to two reference Ag NPs (naked and coated with polyvinylpyrrolidone-PVP). Cell viability, inflammatory response, reactive oxygen species, oxidative DNA damage, cell cycle, and cell-particle interactions were analyzed in the alveolar in vitro model, A549 cells. The results show a different toxicity pattern of the novel Ag NPs compared to reference NPs and that between the two novel NPs, the AgHEC solution is the one with the lower toxicity and to be further developed within the SbD framework.

11.
Sci Total Environ ; 895: 165059, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37353034

ABSTRACT

During the early stage of the COVID-19 pandemic (winter 2020), the northern part of Italy has been significantly affected by viral infection compared to the rest of the country leading the scientific community to hypothesize that airborne particulate matter (PM) could act as a carrier for the SARS-CoV-2. To address this controversial issue, we first verified and demonstrated the presence of SARS-CoV-2 RNA genome on PM2.5 samples, collected in the city of Bologna (Northern Italy) in winter 2021. Then, we employed classical molecular dynamics (MD) simulations to investigate the possible recognition mechanism(s) between a newly modelled PM2.5 fragment and the SARS-CoV-2 Spike protein. The potential molecular interaction highlighted by MD simulations suggests that the glycans covering the upper Spike protein regions would mediate the direct contact with the PM2.5 carbon core surface, while a cloud of organic and inorganic PM2.5 components surround the glycoprotein with a network of non-bonded interactions resulting in up to 4769 total contacts. Moreover, a binding free energy of -207.2 ± 3.9 kcal/mol was calculated for the PM-Spike interface through the MM/GBSA method, and structural analyses also suggested that PM attachment does not alter the protein conformational dynamics. Although the association between the PM and SARS-CoV-2 appears plausible, this simulation does not assess whether these established interactions are sufficiently stable to carry the virus in the atmosphere, or whether the virion retains its infectiousness after the transport. While these key aspects should be verified by further experimental analyses, for the first time, this pioneering study gains insights into the molecular interactions between PM and SARS-CoV-2 Spike protein and will support further research aiming at clarifying the possible relationship between PM abundance and the airborne diffusion of viruses.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Particulate Matter/analysis , Pandemics , RNA, Viral , Molecular Dynamics Simulation
12.
Sci Rep ; 13(1): 18616, 2023 10 30.
Article in English | MEDLINE | ID: mdl-37903867

ABSTRACT

Exposures to fine particulate matter (PM[Formula: see text]) have been associated with health impacts, but the understanding of the PM[Formula: see text] concentration-response (PM[Formula: see text]-CR) relationships, especially at low PM[Formula: see text], remains incomplete. Here, we present novel data using a methodology to mimic lung exposure to ambient air (2[Formula: see text] 60 [Formula: see text]g m[Formula: see text]), with minimized sampling artifacts for nanoparticles. A reference model (Air Liquid Interface cultures of human bronchial epithelial cells, BEAS-2B) was used for aerosol exposure. Non-linearities observed in PM[Formula: see text]-CR curves are interpreted as a result of the interplay between the aerosol total oxidative potential (OP[Formula: see text]) and its distribution across particle size (d[Formula: see text]). A d[Formula: see text]-dependent condensation sink (CS) is assessed together with the distribution with d[Formula: see text] of reactive species . Urban ambient aerosol high in OP[Formula: see text], as indicated by the DTT assay, with (possibly copper-containing) nanoparticles, shows higher pro-inflammatory and oxidative responses, this occurring at lower PM[Formula: see text] concentrations (< 5 [Formula: see text]g m[Formula: see text]). Among the implications of this work, there are recommendations for global efforts to go toward the refinement of actual air quality standards with metrics considering the distribution of OP[Formula: see text] with d[Formula: see text] also at relatively low PM[Formula: see text].


Subject(s)
Air Pollutants , Particulate Matter , Humans , Particulate Matter/analysis , Particle Size , Oxidative Stress , Aerosols , Inflammation/chemically induced , Air Pollutants/toxicity , Air Pollutants/analysis
13.
Part Fibre Toxicol ; 9: 32, 2012 Aug 10.
Article in English | MEDLINE | ID: mdl-22882971

ABSTRACT

BACKGROUND: Respirable crystalline silica (silicon dioxide; SiO2, quartz) particles are known to induce chronic inflammation and lung disease upon long-term inhalation, whereas non-crystalline (amorphous) SiO2 particles in the submicrometre range are regarded as less harmful. Several reports have demonstrated that crystalline, but also non-crystalline silica particles induce IL-1ß release from macrophages via the NALP3-inflammasome complex (caspase-1, ASC and NALP3) in the presence of lipopolysaccharide (LPS) from bacteria. Our aim was to study the potential of different non-crystalline SiO2 particles from the nano- to submicro-sized range to activate IL-1ß responses in LPS-primed RAW264.7 macrophages and primary rat lung macrophages. The role of the NALP3-inflammasome and up-stream mechanisms was further explored in RAW264.7 cells. RESULTS: In the present study, we have shown that 6 h exposure to non-crystalline SiO2 particles in nano- (SiNPs, 5-20 nm, 50 nm) and submicro-sizes induced strong IL-1ß responses in LPS-primed mouse macrophages (RAW264.7) and primary rat lung macrophages. The primary lung macrophages were more sensitive to Si-exposure than the RAW-macrophages, and responded more strongly. In the lung macrophages, crystalline silica (MinUsil 5) induced IL-1ß release more potently than the non-crystalline Si50 and Si500, when adjusted to surface area. This difference was much less pronounced versus fumed SiNPs. The caspase-1 inhibitor zYVAD and RNA silencing of the NALP3 receptor reduced the particle-induced IL-1ß release in the RAW264.7 macrophages. Furthermore, inhibitors of phagocytosis, endosomal acidification, and cathepsin B activity reduced the IL-1ß responses to the different particles to a similar extent. CONCLUSIONS: In conclusion, non-crystalline silica particles in the nano- and submicro-size ranges seemed to induce IL-1ß release from LPS-primed RAW264.7 macrophages via similar mechanisms as crystalline silica, involving particle uptake, phagosomal leakage and activation of the NALP3 inflammasome. Notably, rat primary lung macrophages were more sensitive with respect to silica-induced IL-1ß release. The differential response patterns obtained suggest that silica-induced IL-1ß responses not only depend on the particle surface area, but on factors and/or mechanisms such as particle reactivity or particle uptake. These findings may suggest that bacterial infection via LPS may augment acute inflammatory effects of non-crystalline as well as crystalline silica particles.


Subject(s)
Interleukin-1beta/metabolism , Macrophage Activation/drug effects , Macrophages/drug effects , Macrophages/metabolism , Nanoparticles/adverse effects , Silicon Dioxide/pharmacology , Animals , Biological Transport , Cell Line, Transformed , Cells, Cultured , Inflammasomes/metabolism , Lipopolysaccharides , Macrophages/immunology , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Male , Mice , Molecular Conformation , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Particle Size , Phagosomes/drug effects , Phagosomes/immunology , Phagosomes/metabolism , Rats , Rats, Inbred WKY , Silicon Dioxide/adverse effects , Silicon Dioxide/chemistry , Silicon Dioxide/metabolism , Surface Properties
14.
Environ Toxicol ; 27(2): 63-73, 2012 Feb.
Article in English | MEDLINE | ID: mdl-20549640

ABSTRACT

PM10 was collected in a Milan urban site, representative of the city air quality, during winter and summer 2006. Mean daily PM10 concentration was 48 µg m(-3) during summer and 148 µg m(-3) during winter. Particles collected on Teflon filters were chemically characterized and the endotoxin content determined by the LAL test. PM10-induced cell toxicity, assessed with MTT and LDH methods, and proinflammatory potential, monitored by IL-6 and IL-8 cytokines release, were investigated on the human alveolar epithelial cell line A549 exposed to increasing doses of PM. Besides untreated cells, exposure to inert carbon particles (2-12 µm) was also used as additional control. Both cell toxicity and proinflammatory potency resulted to be higher for summer PM10 with respect of winter PM10, with IL-6 showing the highest dose-dependent release. The relevance of biogenic components adsorbed onto PM10 in eliciting the proinflammatory mediators release was investigated by inhibition experiments. Polymixin B (Poly) was used to inhibit particle-bind LPS while Toll-like receptor-2 antibody (a-TLR2) to specifically block the activation of this receptor. While cell viability was not modulated in cells coexposed to PM10 and Poly or a-TLR2 or both, inflammatory response did it, with IL-6 release being the most inhibited. In conclusion, Milan PM10-induced seasonal-dependent biological effects, with summer particles showing higher cytotoxic and proinflammatory potential. Cytotoxicity seemed to be unaffected by the PM biogenic components, while inflammation was significantly reduced after the inhibition of some biogenic activated pathways. Besides, the PM-associated biogenic activity does not entirely justify the PM-induced inflammatory effects. © 2010 Wiley Periodicals, Inc. Environ Toxicol 2012.


Subject(s)
Air Pollutants/toxicity , Particulate Matter/toxicity , Air Pollution/statistics & numerical data , Carbon/pharmacology , Cell Line , Cell Survival/drug effects , Cells, Cultured , Cities , Cytokines/metabolism , Environmental Monitoring , Humans , Inflammation/chemically induced , Inflammation/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Italy , Particle Size , Seasons
15.
Toxics ; 10(12)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36548614

ABSTRACT

Zinc oxide (ZnO) is the most efficient curing activator employed in the industrial rubber production. However, ZnO and Zn(II) ions are largely recognized as an environmental hazard being toxic to aquatic organisms, especially considering Zn(II) release during tire lifecycle. In this context, aiming at reducing the amount of microcrystalline ZnO, a novel activator was recently synthetized, constituted by ZnO nanoparticles (NPs) anchored to silica NPs (ZnO-NP@SiO2-NP). The objective of this work is to define the possible hazards deriving from the use of ZnO-NP@SiO2-NP compared to ZnO and SiO2 NPs traditionally used in the tire industry. The safety of the novel activators was assessed by in vitro testing, using human lung epithelial (A549) and immune (THP-1) cells, and by the in vivo model zebrafish (Danio rerio). The novel manufactured nanomaterial was characterized morphologically and structurally, and its effects evaluated in vitro by the measurement of the cell viability and the release of inflammatory mediators, while in vivo by the Fish Embryo Acute Toxicity (FET) test. Resulting data demonstrated that ZnO-NP@SiO2-NP, despite presenting some subtoxic events, exhibits the lack of acute effects both in vitro and in vivo, supporting the safe-by-design development of this novel material for the rubber industry.

16.
Pediatr Pulmonol ; 57(1): 66-74, 2022 01.
Article in English | MEDLINE | ID: mdl-34606693

ABSTRACT

BACKGROUND: Lockdown measures during the SARS-CoV-2 pandemic determined radical changes to behavioral and social habits, that were reflected by a reduction in the transmission of respiratory pathogens and in anthropogenic atmospheric emissions. OBJECTIVE: This ecological study aims to provide a descriptive evaluation on how restrictive measures during the SARS-CoV-2 pandemic impacted Pediatric Emergency Department (PED) referrals for asthma exacerbations, and their potentially associated environmental triggers in Bologna, a densely populated urban area in Northern Italy. METHODS: Files of children evaluated for acute asthma during 2015 to 2020 at the PED of Sant'Orsola University Hospital of Bologna were retrospectively reviewed. Historical daily concentration records of particulate (PM2.5 , PM10 ) and gaseous (NO2 , C6 H6 ) air pollutants, and pollen were concurrently evaluated, including specific PM chemical tracers for traffic-related air pollution (TRAP). RESULTS: In 2020, asthma-related PED referrals decreased compared to referral rates of the previous 5 years (p < 0.01). This effect was particularly marked during the first lockdown period (March to May), when the drastic drop in PED referrals was associated with a reduction of high-priority cases up to 85% and by 54%, on average. A concomitant reduction in the concentrations of traffic-related air pollutants was observed in the range of 40%-60% (p < 0.01). CONCLUSIONS: The lower rate of asthma exacerbations in childhood was in this study paralleled with reduced TRAP levels during the pandemic. Synergic interactions of the multiple consequences of lockdowns likely contributed to the reduced exacerbations, including decreased exposure to ambient pollutants and fewer respiratory infections, identified as the most important factor in the literature.


Subject(s)
Air Pollutants , Air Pollution , Asthma , COVID-19 , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Air Pollution/statistics & numerical data , Asthma/epidemiology , Communicable Disease Control , Emergency Service, Hospital , Environmental Monitoring , Humans , Pandemics , Particulate Matter/analysis , Referral and Consultation , Retrospective Studies , SARS-CoV-2
17.
Toxics ; 10(10)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36287897

ABSTRACT

Aviation is one of the sectors affecting climate change, and concerns have been raised over the increase in the number of flights all over the world. To reduce the climate impact, efforts have been dedicated to introducing biofuel blends as alternatives to fossil fuels. Here, we report environmentally relevant data on the emission factors of biofuel/fossil fuel blends (from 13 to 17% v/v). Moreover, in vitro direct exposure of human bronchial epithelial cells to the emissions was studied to determine their potential intrinsic hazard and to outline relevant lung doses. The results show that the tested biofuel blends do not reduce the emissions of particles and other chemical species compared to the fossil fuel. The blends do reduce the elemental carbon (less than 40%) and total volatile organic compounds (less than 30%) compared to fossil fuel emissions. The toxicological outcomes show an increase in oxidative cellular response after only 40 min of exposure, with biofuels causing a lower response compared to fossil fuels, and lung-deposited doses show differences among the fuels tested. The data reported provide evidence of the possibility to reduce the climate impact of the aviation sector and contribute to the risk assessment of biofuels for aviation.

18.
Mutat Res ; 713(1-2): 18-31, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21645525

ABSTRACT

Airborne particulate matter (PM) is considered to be an important contributor to lung diseases. In the present study we report that Milan winter-PM2.5 inhibited proliferation in human bronchial epithelial cells (BEAS-2B) by inducing mitotic arrest. The cell cycle arrest was followed by an increase in mitotic-apoptotic cells, mitotic slippage and finally an increase in "classical" apoptotic cells. Exposure to winter-PM10 induced only a slight effect which may be due to the presence of PM2.5 in this fraction while pure combustion particles failed to disturb mitosis. Fewer cells expressing the mitosis marker phospho-histone H3 compared to cells with condensed chromosomes, suggest that PM2.5 induced premature mitosis. PM2.5 was internalized into the cells and often localized in laminar organelles, although particles without apparent plasma membrane covering were also seen. In PM-containing cells mitochondria and lysosomes were often damaged, and in mitotic cells fragmented chromosomes often appeared. PM2.5 induced DNA strands breaks and triggered a DNA-damage response characterized by increased phosphorylation of ATM, Chk2 and H2AX; as well as induced a marked increase in expression of the aryl hydrocarbon receptor (AhR)-regulated genes, CYP1A1, CYP1B1 and AhRR. Furthermore, some disturbance of the organization of microtubules was indicated. It is hypothesized that the induced mitotic arrest and following cell death was due to a premature chromosome condensation caused by a combination of DNA, mitochondrial and spindle damage.


Subject(s)
Cell Death/drug effects , DNA Damage/drug effects , Mitochondria/drug effects , Mitosis/drug effects , Particulate Matter/toxicity , Spindle Apparatus/drug effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line , Cell Proliferation/drug effects , Humans , Lung/drug effects , Repressor Proteins/metabolism , Respiratory Mucosa/drug effects
19.
Environ Int ; 141: 105714, 2020 08.
Article in English | MEDLINE | ID: mdl-32416371

ABSTRACT

In the framework of the 2017 "carbonaceous aerosol in Rome and Environs" (CARE) experiment, particle number size distributions have been continuously measured on February 2017 in downtown Rome. These data have been used to estimate, through MPPD model, size and time resolved particle mass, surface area and number doses deposited into the respiratory system. Dosimetry estimates are presented for PM10, PM2.5, PM1 and Ultrafine Particles (UFPs), in relation to the aerosol sources peculiar to the Mediterranean basin and to the atmospheric conditions. Particular emphasis is focused on UFPs and their fraction deposited on the olfactory bulb, in view of their possible translocation to the brain. The site of PM10 deposition within the respiratory system considerably changes, depending on the aerosol sources and then on its different size distributions. On making associations between health endpoints and aerosol mass concentrations, the relevant coarse and fine fractions would be more properly adopted, because they have different sources, different capability of penetrating deep into the respiratory system and different toxicological implications. The separation between them should be set at 1 µm, rather than at 2.5 µm, because the fine fraction is considerably less affected by the contribution of the natural sources. Mass dose is a suitable metric to describe coarse aerosol events but gives a poor representation of combustion aerosol. This fraction of particles, made of UFPs and of accumulation mode particles (mainly with size below 0.2 µm), is of high health relevance. It elicited the highest oxidative activity in the CARE experiment and is properly described by the particle surface area and by the number metrics. Such metrics are even more relevant for the UFP doses deposited on the olfactory bulb, in consideration of the role recognized to oxidative stress in the progression of neurodegenerative diseases. Such metrics would be more appropriate, rather than PMx mass concentrations, to correlate neurodegenerative pathologies with aerosol pollution.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols , Air Pollutants/analysis , Environmental Monitoring , Particle Size , Particulate Matter/analysis , Respiratory System/chemistry
20.
Environ Sci Pollut Res Int ; 26(31): 32645-32665, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31576506

ABSTRACT

At present, both tropospheric ozone (O3) and particulate matters (PM) are among the most threatening air pollutants for human health in cities. The air pollution effects over public health include increased risk of hospital admissions and mortality for respiratory and cardiovascular diseases even when air pollutant concentrations are below European and international standards. The aim of this study was to (i) estimate the burden of mortality and morbidity for cardiovascular and respiratory diseases attributed to PM2.5, PM10 and O3 in nine selected cities in France, Iran and Italy in 2015 and 2016 and to (ii) compare estimated burdens at current O3 and PM levels with pre-industrial levels. The selected Mediterranean cities are among the most affected by the air pollution in Europe, in particular by rising O3 while the selected Iranian cities rank as the most polluted by PM in the world. The software AirQ+ was used to estimate the short-term health effects, in terms of mortality and morbidity by using in situ air quality data, city-specific relative risk values and baseline incidence. Compared to pre-industrial levels, long-term exposures to ambient PM2.5, PM10 and O3 have substantially contributed to mortality and hospital admissions in selected cities: about 8200 deaths for non-accidental causes, 2400 deaths for cardiovascular diseases, 540 deaths for respiratory diseases, 220 deaths for chronic obstructive pulmonary diseases as well as 18,800 hospital admissions for cardiovascular diseases and 3400 for respiratory diseases were reported in 2015. The study supports the need of city-specific epidemiological data and urgent strategies to mitigate the health burden of air pollution.


Subject(s)
Air Pollutants/analysis , Cardiovascular Diseases/epidemiology , Environmental Exposure/analysis , Ozone/analysis , Particulate Matter/analysis , Air Pollutants/adverse effects , Cardiovascular Diseases/etiology , Cities , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Europe , France , Humans , Iran , Italy , Ozone/chemistry , Particulate Matter/toxicity , Public Health , Respiration Disorders , Risk
SELECTION OF CITATIONS
SEARCH DETAIL