Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO Rep ; 2024 Oct 18.
Article in English | MEDLINE | ID: mdl-39424955

ABSTRACT

Macrophages fight infection and ensure tissue repair, often operating at nutrient-poor wound sites. We investigated the ability of human macrophages to metabolize glycogen. We observed that the cytokines GM-CSF and M-CSF plus IL-4 induced glycogenesis and the accumulation of glycogen by monocyte-derived macrophages. Glyconeogenesis occurs in cells cultured in the presence of the inflammatory cytokines GM-CSF and IFNγ (M1 cells), via phosphoenolpyruvate carboxykinase 2 (PCK2) and fructose-1,6-bisphosphatase 1 (FBP1). Enzyme inhibition with drugs or gene silencing techniques and 13C-tracing demonstrate that glutamine (metabolized by the TCA cycle), lactic acid, and glycerol were substrates of glyconeogenesis only in M1 cells. Tumor-associated macrophages (TAMs) also store glycogen and can perform glyconeogenesis. Finally, macrophage glycogenolysis and the pentose phosphate pathway (PPP) support cytokine secretion and phagocytosis regardless of the availability of extracellular glucose. Thus, glycogen metabolism supports the functions of human M1 and M2 cells, with inflammatory M1 cells displaying a possible dependence on glyconeogenesis.

2.
Brain ; 147(1): 91-99, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37804319

ABSTRACT

Pathogenic variants in the MFN2 gene are commonly associated with autosomal dominant (CMT2A2A) or recessive (CMT2A2B) Charcot-Marie-Tooth disease, with possible involvement of the CNS. Here, we present a case of severe antenatal encephalopathy with lissencephaly, polymicrogyria and cerebellar atrophy. Whole genome analysis revealed a homozygous deletion c.1717-274_1734 del (NM_014874.4) in the MFN2 gene, leading to exon 16 skipping and in-frame loss of 50 amino acids (p.Gln574_Val624del), removing the proline-rich domain and the transmembrane domain 1 (TM1). MFN2 is a transmembrane GTPase located on the mitochondrial outer membrane that contributes to mitochondrial fusion, shaping large mitochondrial networks within cells. In silico modelling showed that the loss of the TM1 domain resulted in a drastically altered topological insertion of the protein in the mitochondrial outer membrane. Fetus fibroblasts, investigated by fluorescent cell imaging, electron microscopy and time-lapse recording, showed a sharp alteration of the mitochondrial network, with clumped mitochondria and clusters of tethered mitochondria unable to fuse. Multiple deficiencies of respiratory chain complexes with severe impairment of complex I were also evidenced in patient fibroblasts, without involvement of mitochondrial DNA instability. This is the first reported case of a severe developmental defect due to MFN2 deficiency with clumped mitochondria.


Subject(s)
Brain Diseases , Charcot-Marie-Tooth Disease , Pregnancy , Humans , Female , Homozygote , Mutation/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Sequence Deletion , Mitochondria/metabolism , Brain Diseases/genetics , Charcot-Marie-Tooth Disease/genetics , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism
3.
Ann Neurol ; 91(2): 225-237, 2022 02.
Article in English | MEDLINE | ID: mdl-34954817

ABSTRACT

OBJECTIVE: ATP synthase (ATPase) is responsible for the majority of ATP production. Nevertheless, disease phenotypes associated with mutations in ATPase subunits are extremely rare. We aimed at expanding the spectrum of ATPase-related diseases. METHODS: Whole-exome sequencing in cohorts with 2,962 patients diagnosed with mitochondrial disease and/or dystonia and international collaboration were used to identify deleterious variants in ATPase-encoding genes. Findings were complemented by transcriptional and proteomic profiling of patient fibroblasts. ATPase integrity and activity were assayed using cells and tissues from 5 patients. RESULTS: We present 10 total individuals with biallelic or de novo monoallelic variants in nuclear ATPase subunit genes. Three unrelated patients showed the same homozygous missense ATP5F1E mutation (including one published case). An intronic splice-disrupting alteration in compound heterozygosity with a nonsense variant in ATP5PO was found in one patient. Three patients had de novo heterozygous missense variants in ATP5F1A, whereas another 3 were heterozygous for ATP5MC3 de novo missense changes. Bioinformatics methods and populational data supported the variants' pathogenicity. Immunohistochemistry, proteomics, and/or immunoblotting revealed significantly reduced ATPase amounts in association to ATP5F1E and ATP5PO mutations. Diminished activity and/or defective assembly of ATPase was demonstrated by enzymatic assays and/or immunoblotting in patient samples bearing ATP5F1A-p.Arg207His, ATP5MC3-p.Gly79Val, and ATP5MC3-p.Asn106Lys. The associated clinical profiles were heterogeneous, ranging from hypotonia with spontaneous resolution (1/10) to epilepsy with early death (1/10) or variable persistent abnormalities, including movement disorders, developmental delay, intellectual disability, hyperlactatemia, and other neurologic and systemic features. Although potentially reflecting an ascertainment bias, dystonia was common (7/10). INTERPRETATION: Our results establish evidence for a previously unrecognized role of ATPase nuclear-gene defects in phenotypes characterized by neurodevelopmental and neurodegenerative features. ANN NEUROL 2022;91:225-237.


Subject(s)
Mitochondria/enzymology , Mitochondrial Proton-Translocating ATPases/genetics , Nervous System Diseases/enzymology , Nervous System Diseases/genetics , Neurodegenerative Diseases/enzymology , Neurodegenerative Diseases/genetics , Neurodevelopmental Disorders/enzymology , Neurodevelopmental Disorders/genetics , Dystonia/enzymology , Dystonia/genetics , Epilepsy/genetics , Genetic Variation , Humans , Mitochondria/genetics , Mitochondrial ADP, ATP Translocases/genetics , Mitochondrial Diseases/enzymology , Mitochondrial Diseases/genetics , Models, Molecular , Mutation , Mutation, Missense , Pedigree , Phenotype , Proteomics , Exome Sequencing
4.
Cell Mol Life Sci ; 79(10): 525, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36125552

ABSTRACT

Understanding temperature production and regulation in endotherm organisms becomes a crucial challenge facing the increased frequency and intensity of heat strokes related to global warming. Mitochondria, located at the crossroad of metabolism, respiration, Ca2+ homeostasis, and apoptosis, were recently proposed to further act as cellular radiators, with an estimated inner temperature reaching 50 °C in common cell lines. This inner thermogenesis might be further exacerbated in organs devoted to produce consistent efforts as muscles, or heat as brown adipose tissue, in response to acute solicitations. Consequently, pathways promoting respiratory chain uncoupling and mitochondrial activity, such as Ca2+ fluxes, uncoupling proteins, futile cycling, and substrate supplies, provide the main processes controlling heat production and cell temperature. The mitochondrial thermogenesis might be further amplified by cytoplasmic mechanisms promoting the over-consumption of ATP pools. Considering these new thermic paradigms, we discuss here all conventional wisdoms linking mitochondrial functions to cellular thermogenesis in different physiological conditions.


Subject(s)
Mitochondria , Thermogenesis , Adenosine Triphosphate/metabolism , Adipose Tissue, Brown/metabolism , Mitochondria/metabolism , Mitochondrial Uncoupling Proteins/metabolism , Thermogenesis/physiology
5.
Clin Genet ; 102(5): 438-443, 2022 11.
Article in English | MEDLINE | ID: mdl-35861300

ABSTRACT

Leigh syndrome (LS) is a progressive neurodegenerative disease, characterized by extensive clinical, biochemical, and genetic heterogeneity. Recently, biallelic variants in DNAJC30 gene, encoding a protein crucial for the repair of mitochondrial complex I subunits, have been associated with Leber hereditary optic neuropathy and LS. It was suggested that clinical heterogeneity of DNAJC30-associated mitochondrial disease may be attributed to digenic inheritance. We describe three Polish patients, a 9-year-old boy, and female and male siblings, aged 17 and 11 years, with clinical and biochemical manifestations of LS. Exome sequencing (ES) identified a homozygous pathogenic variant in DNAJC30 c.152A>G, p.(Tyr51Cys) in the 9-year-old boy. In the siblings, ES identified two DNAJC30 variants: c.152A>G, p.(Tyr51Cys) and c.130_131del, p.(Ser44ValfsTer8) in a compound heterozygous state. In addition, both siblings carried a novel heterozygous c.484G>T, p.(Val162Leu) variant in NDUFS8 gene. This report provides further evidence for the association of DNAJC30 variants with LS. DNAJC30-associated LS is characterized by variable age at onset, movement disorder phenotype and normal or moderately elevated blood lactate level. Identification of a candidate heterozygous variant in NDUFS8 supports the hypothesis of digenic inheritance. Importantly, DNAJC30 pathogenic variants should be suspected in patients with LS irrespective of optic nerve involvement.


Subject(s)
Leigh Disease , Mitochondrial Diseases , Neurodegenerative Diseases , Female , Humans , Lactates , Leigh Disease/genetics , Leigh Disease/pathology , Male , Mitochondrial Diseases/genetics , Mutation , Phenotype
6.
J Inherit Metab Dis ; 45(5): 996-1012, 2022 09.
Article in English | MEDLINE | ID: mdl-35621276

ABSTRACT

Mitochondrial complex V plays an important role in oxidative phosphorylation by catalyzing the generation of ATP. Most complex V subunits are nuclear encoded and not yet associated with recognized Mendelian disorders. Using exome sequencing, we identified a rare homozygous splice variant (c.87+3A>G) in ATP5PO, the complex V subunit which encodes the oligomycin sensitivity conferring protein, in three individuals from two unrelated families, with clinical suspicion of a mitochondrial disorder. These individuals had a similar, severe infantile and often lethal multi-systemic disorder that included hypotonia, developmental delay, hypertrophic cardiomyopathy, progressive epileptic encephalopathy, progressive cerebral atrophy, and white matter abnormalities on brain MRI consistent with Leigh syndrome. cDNA studies showed a predominant shortened transcript with skipping of exon 2 and low levels of the normal full-length transcript. Fibroblasts from the affected individuals demonstrated decreased ATP5PO protein, defective assembly of complex V with markedly reduced amounts of peripheral stalk proteins, and complex V hydrolytic activity. Further, expression of human ATP5PO cDNA without exon 2 (hATP5PO-∆ex2) in yeast cells deleted for yATP5 (ATP5PO homolog) was unable to rescue growth on media which requires oxidative phosphorylation when compared to the wild type construct (hATP5PO-WT), indicating that exon 2 deletion leads to a non-functional protein. Collectively, our findings support the pathogenicity of the ATP5PO c.87+3A>G variant, which significantly reduces but does not eliminate complex V activity. These data along with the recent report of an affected individual with ATP5PO variants, add to the evidence that rare biallelic variants in ATP5PO result in defective complex V assembly, function and are associated with Leigh syndrome.


Subject(s)
Brain Diseases , Leigh Disease , Mitochondrial Proton-Translocating ATPases , Brain Diseases/metabolism , DNA, Complementary/metabolism , Humans , Leigh Disease/genetics , Leigh Disease/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proton-Translocating ATPases/genetics , Mutation , Proteins/metabolism
7.
Genet Med ; 23(9): 1769-1778, 2021 09.
Article in English | MEDLINE | ID: mdl-34040194

ABSTRACT

PURPOSE: Diseases caused by defects in mitochondrial DNA (mtDNA) maintenance machinery, leading to mtDNA deletions, form a specific group of disorders. However, mtDNA deletions also appear during aging, interfering with those resulting from mitochondrial disorders. METHODS: Here, using next-generation sequencing (NGS) data processed by eKLIPse and data mining, we established criteria distinguishing age-related mtDNA rearrangements from those due to mtDNA maintenance defects. MtDNA deletion profiles from muscle and urine patient samples carrying pathogenic variants in nuclear genes involved in mtDNA maintenance (n = 40) were compared with age-matched controls (n = 90). Seventeen additional patient samples were used to validate the data mining model. RESULTS: Overall, deletion number, heteroplasmy level, deletion locations, and the presence of repeats at deletion breakpoints were significantly different between patients and controls, especially in muscle samples. The deletion number was significantly relevant in adults, while breakpoint repeat lengths surrounding deletions were discriminant in young subjects. CONCLUSION: Altogether, eKLIPse analysis is a powerful tool for measuring the accumulation of mtDNA deletions between patients of different ages, as well as in prioritizing novel variants in genes involved in mtDNA stability.


Subject(s)
Genome, Mitochondrial , Mitochondrial Diseases , Adult , DNA, Mitochondrial/genetics , Genome, Mitochondrial/genetics , High-Throughput Nucleotide Sequencing , Humans , Mitochondria/genetics , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/genetics , Sequence Deletion/genetics
8.
Int J Mol Sci ; 22(17)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34502189

ABSTRACT

Since its discovery, mitophagy has been viewed as a protective mechanism used by cancer cells to prevent the induction of mitochondrial apoptosis. Most cancer treatments directly or indirectly cause mitochondrial dysfunction in order to trigger signals for cell death. Elimination of these dysfunctional mitochondria by mitophagy could thus prevent the initiation of the apoptotic cascade. In breast cancer patients, resistance to doxorubicin (DOX), one of the most widely used cancer drugs, is an important cause of poor clinical outcomes. However, the role played by mitophagy in the context of DOX resistance in breast cancer cells is not well understood. We therefore tried to determine whether an increase in mitophagic flux was associated with the resistance of breast cancer cells to DOX. Our first objective was to explore whether DOX-resistant breast cancer cells were characterized by conditions that favor mitophagy induction. We next tried to determine whether mitophagic flux was increased in DOX-resistant cells in response to DOX treatment. For this purpose, the parental (MCF-7) and DOX-resistant (MCF-7dox) breast cancer cell lines were used. Our results show that mitochondrial reactive oxygen species (ROS) production and hypoxia-inducible factor-1 alpha (HIF-1 alpha) expression are higher in MCF-7dox in a basal condition compared to MCF-7, suggesting DOX-resistant breast cancer cells are prone to stimuli to induce a mitophagy-related event. Our results also showed that, in response to DOX, autophagolysosome formation is induced in DOX-resistant breast cancer cells. This mitophagic step following DOX treatment seems to be partly due to mitochondrial ROS production as autophagolysosome formation is moderately decreased by the mitochondrial antioxidant mitoTEMPO.


Subject(s)
Breast Neoplasms/physiopathology , Doxorubicin/pharmacology , Drug Resistance, Neoplasm , Lysosomes , Mitophagy , Reactive Oxygen Species/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Doxorubicin/therapeutic use , Female , Humans , MCF-7 Cells , Mitochondria/metabolism
9.
Hum Mutat ; 41(2): 397-402, 2020 02.
Article in English | MEDLINE | ID: mdl-31680380

ABSTRACT

Pathogenic GFM1 variants have been linked to neurological phenotypes with or without liver involvement, but only a few cases have been reported in the literature. Here, we report clinical, biochemical, and neuroimaging findings from nine unrelated children carrying GFM1 variants, 10 of which were not previously reported. All patients presented with neurological involvement-mainly axial hypotonia and dystonia during the neonatal period-with five diagnosed with West syndrome; two children had liver involvement with cytolysis episodes or hepatic failure. While two patients died in infancy, six exhibited a stable clinical course. Brain magnetic resonance imaging showed the involvement of basal ganglia, brainstem, and periventricular white matter. Mutant EFG1 and OXPHOS proteins were decreased in patient's fibroblasts consistent with impaired mitochondrial translation. Thus, we expand the genetic spectrum of GFM1-linked disease and provide detailed clinical profiles of the patients that will improve the diagnostic success for other patients carrying GFM1 mutations.


Subject(s)
Fibroblasts/metabolism , Gene Expression Regulation , Genetic Association Studies , Genetic Predisposition to Disease , Mitochondrial Proteins/genetics , Mutation , Neuroimaging , Peptide Elongation Factor G/genetics , Alleles , Brain/diagnostic imaging , Brain/pathology , Databases, Genetic , Female , Genetic Association Studies/methods , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Mitochondria/genetics , Neuroimaging/methods , Pedigree
10.
J Hum Genet ; 65(2): 91-98, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31645654

ABSTRACT

Hereditary spastic paraplegias (HSPs) are characterized by lower extremity spasticity and weakness. HSP is often caused by mutations in SPG genes, but it may also be produced by inborn errors of metabolism. We performed next-generation sequencing of 4813 genes in one adult twin pair with HSP and severe muscular weakness occurring at the same age. We found two pathogenic compound heterozygous variants in MTHFR, including a variant not referenced in international databases, c.197C>T (p.Pro66Leu) and a known variant, c.470G>A (p.Arg157Gln), and two heterozygous pathogenic variants in POLG, c.1760C>T (p.Pro587Leu) and c.752C>T (p.Thr251Ile). MTHFR and POLG mutations were consistent with the severe muscle weakness and the metabolic changes, including hyperhomocysteinemia and decreased activity of both N(5,10)methylenetetrahydrofolate reductase (MTHFR) and complexes I and II of the mitochondrial respiratory chain. These data suggest the potential role of MTHFR and POLG mutations through consequences on mitochondrial dysfunction in the occurrence of spastic paraparesis phenotype with combined metabolic, muscular, and neurological components.


Subject(s)
DNA Polymerase gamma/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Mitochondrial Diseases/genetics , Paraparesis, Spastic/genetics , Spastic Paraplegia, Hereditary/genetics , Female , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Middle Aged , Mitochondrial Diseases/diagnosis , Mutation , Paraparesis, Spastic/diagnosis , Sequence Analysis, DNA , Spastic Paraplegia, Hereditary/diagnosis , Twins, Monozygotic
11.
FASEB J ; 33(5): 5864-5875, 2019 05.
Article in English | MEDLINE | ID: mdl-30817178

ABSTRACT

Angiogenesis is a complex process leading to the growth of new blood vessels from existing vasculature, triggered by local proangiogenic factors such as VEGF. An excess of angiogenesis is a recurrent feature of various pathologic conditions such as tumor growth. Phostines are a family of synthetic glycomimetic compounds that exhibit anticancer properties, and the lead compound 3-hydroxy-4,5-bis-benzyloxy-6-benzyloxymethyl-2-phenyl2-oxo-2λ5-[1,2]oxaphosphinane (PST 3.1a) shows antiglioblastoma properties both in vitro and in vivo. In the present study, we assessed the effect of PST 3.1a on angiogenesis and endothelial metabolism. In vitro, PST 3.1a (10 µM) inhibited all steps that regulate angiogenesis, including migration, proliferation, adhesion, and tube formation. In vivo, PST 3.1a reduced intersegmental vessel formation and vascularization of the subintestinal plexus in zebrafish embryos and also altered pathologic angiogenesis and glioblastoma progression in vivo. Mechanistically, PST 3.1a altered interaction of VEGF receptor 2 and glycosylation-regulating protein galectin-1, a key component regulating angiogenesis associated with tumor resistance. Thus, these data show that use of PST 3.1a is an innovative approach to target angiogenesis.-Bousseau, S., Marchand, M., Soleti, R., Vergori, L., Hilairet, G., Recoquillon, S., Le Mao, M., Gueguen, N., Khiati, S., Clarion, L., Bakalara, N., Martinez, M. C., Germain, S., Lenaers, G., Andriantsitohaina, R. Phostine 3.1a as a pharmacological compound with antiangiogenic properties against diseases with excess vascularization.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Neovascularization, Pathologic/drug therapy , Phosphines/pharmacology , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Animals , Apoptosis , Cell Adhesion , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation , Endothelial Cells/metabolism , Extracellular Matrix/metabolism , Galectin 1/metabolism , Glioblastoma/metabolism , Glycosylation , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice , Mice, Nude , Neoplasm Transplantation , Signal Transduction/drug effects , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Zebrafish
12.
Int J Mol Sci ; 21(8)2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32344771

ABSTRACT

Leber's hereditary optic neuropathy (LHON, MIM#535000) is the most common form of inherited optic neuropathies and mitochondrial DNA-related diseases. The pathogenicity of mutations in genes encoding components of mitochondrial Complex I is well established, but the underlying pathomechanisms of the disease are still unclear. Hypothesizing that oxidative stress related to Complex I deficiency may increase protein S-glutathionylation, we investigated the proteome-wide S-glutathionylation profiles in LHON (n = 11) and control (n = 7) fibroblasts, using the GluICAT platform that we recently developed. Glutathionylation was also studied in healthy fibroblasts (n = 6) after experimental Complex I inhibition. The significantly increased reactive oxygen species (ROS) production in the LHON group by Complex I was shown experimentally. Among the 540 proteins which were globally identified as glutathionylated, 79 showed a significantly increased glutathionylation (p < 0.05) in LHON and 94 in Complex I-inhibited fibroblasts. Approximately 42% (33/79) of the altered proteins were shared by the two groups, suggesting that Complex I deficiency was the main cause of increased glutathionylation. Among the 79 affected proteins in LHON fibroblasts, 23% (18/79) were involved in energetic metabolism, 31% (24/79) exhibited catalytic activity, 73% (58/79) showed various non-mitochondrial localizations, and 38% (30/79) affected the cell protein quality control. Integrated proteo-metabolomic analysis using our previous metabolomic study of LHON fibroblasts also revealed similar alterations of protein metabolism and, in particular, of aminoacyl-tRNA synthetases. S-glutathionylation is mainly known to be responsible for protein loss of function, and molecular dynamics simulations and 3D structure predictions confirmed such deleterious impacts on adenine nucleotide translocator 2 (ANT2), by weakening its affinity to ATP/ADP. Our study reveals a broad impact throughout the cell of Complex I-related LHON pathogenesis, involving a generalized protein stress response, and provides a therapeutic rationale for targeting S-glutathionylation by antioxidative strategies.


Subject(s)
Optic Atrophy, Hereditary, Leber/metabolism , Protein S/metabolism , Adenosine Triphosphate/metabolism , Adult , Aged , Disease Susceptibility , Electron Transport Complex I/metabolism , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Male , Middle Aged , Mitochondria/metabolism , Models, Molecular , Optic Atrophy, Hereditary, Leber/drug therapy , Optic Atrophy, Hereditary, Leber/etiology , Protein Conformation , Protein Processing, Post-Translational , Protein S/chemistry , Proteome , Proteomics/methods , Reactive Oxygen Species/metabolism , Signal Transduction , Structure-Activity Relationship , Young Adult
13.
J Cell Sci ; 130(11): 1940-1951, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28424233

ABSTRACT

Mitochondrial dynamics and distribution are critical for supplying ATP in response to energy demand. CLUH is a protein involved in mitochondrial distribution whose dysfunction leads to mitochondrial clustering, the metabolic consequences of which remain unknown. To gain insight into the role of CLUH on mitochondrial energy production and cellular metabolism, we have generated CLUH-knockout cells using CRISPR/Cas9. Mitochondrial clustering was associated with a smaller cell size and with decreased abundance of respiratory complexes, resulting in oxidative phosphorylation (OXPHOS) defects. This energetic impairment was found to be due to the alteration of mitochondrial translation and to a metabolic shift towards glucose dependency. Metabolomic profiling by mass spectroscopy revealed an increase in the concentration of some amino acids, indicating a dysfunctional Krebs cycle, and increased palmitoylcarnitine concentration, indicating an alteration of fatty acid oxidation, and a dramatic decrease in the concentrations of phosphatidylcholine and sphingomyeline, consistent with the decreased cell size. Taken together, our study establishes a clear function for CLUH in coupling mitochondrial distribution to the control of cell energetic and metabolic status.


Subject(s)
Citric Acid Cycle/genetics , DNA, Mitochondrial/genetics , Mitochondria/metabolism , Mitochondrial Dynamics/genetics , RNA-Binding Proteins/metabolism , Adenosine Triphosphate/biosynthesis , CRISPR-Cas Systems , Citric Acid Cycle/drug effects , DNA Damage , DNA, Mitochondrial/metabolism , Ethidium/toxicity , Gene Deletion , HeLa Cells , Humans , Metabolomics , Mitochondria/drug effects , Mitochondria/ultrastructure , Mitochondrial Dynamics/drug effects , Optical Imaging , Oxidation-Reduction , Oxidative Phosphorylation/drug effects , Palmitoylcarnitine/metabolism , Phosphatidylcholines/metabolism , RNA-Binding Proteins/genetics
14.
Am J Hum Genet ; 97(5): 754-60, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26593267

ABSTRACT

Autosomal-recessive optic neuropathies are rare blinding conditions related to retinal ganglion cell (RGC) and optic-nerve degeneration, for which only mutations in TMEM126A and ACO2 are known. In four families with early-onset recessive optic neuropathy, we identified mutations in RTN4IP1, which encodes a mitochondrial ubiquinol oxydo-reductase. RTN4IP1 is a partner of RTN4 (also known as NOGO), and its ortholog Rad8 in C. elegans is involved in UV light response. Analysis of fibroblasts from affected individuals with a RTN4IP1 mutation showed loss of the altered protein, a deficit of mitochondrial respiratory complex I and IV activities, and increased susceptibility to UV light. Silencing of RTN4IP1 altered the number and morphogenesis of mouse RGC dendrites in vitro and the eye size, neuro-retinal development, and swimming behavior in zebrafish in vivo. Altogether, these data point to a pathophysiological mechanism responsible for RGC early degeneration and optic neuropathy and linking RTN4IP1 functions to mitochondrial physiology, response to UV light, and dendrite growth during eye maturation.


Subject(s)
Carrier Proteins/genetics , Fibroblasts/pathology , Mitochondria/pathology , Mitochondrial Proteins/genetics , Mutation/genetics , Optic Nerve Diseases/genetics , Optic Nerve Diseases/pathology , Retinal Ganglion Cells/pathology , Amino Acid Sequence , Animals , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/metabolism , Case-Control Studies , Cells, Cultured , Electron Transport Complex I , Female , Fibroblasts/metabolism , Follow-Up Studies , Genes, Recessive , Humans , Male , Mice , Mitochondria/genetics , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/metabolism , Molecular Sequence Data , Nerve Degeneration , Pedigree , Prognosis , Retinal Ganglion Cells/metabolism , Sequence Homology, Amino Acid , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish/metabolism
15.
Biochim Biophys Acta Mol Basis Dis ; 1864(5 Pt A): 1596-1608, 2018 May.
Article in English | MEDLINE | ID: mdl-29454073

ABSTRACT

Ketogenic diet (KD) which combined carbohydrate restriction and the addition of ketone bodies has emerged as an alternative metabolic intervention used as an anticonvulsant therapy or to treat different types of neurological or mitochondrial disorders including MELAS syndrome. MELAS syndrome is a severe mitochondrial disease mainly due to the m.3243A > G mitochondrial DNA mutation. The broad success of KD is due to multiple beneficial mechanisms with distinct effects of very low carbohydrates and ketones. To evaluate the metabolic part of carbohydrate restriction, transmitochondrial neuronal-like cybrid cells carrying the m.3243A > G mutation, shown to be associated with a severe complex I deficiency was exposed during 3 weeks to glucose restriction. Mitochondrial enzyme defects were combined with an accumulation of complex I (CI) matrix intermediates in the untreated mutant cells, leading to a drastic reduction in CI driven respiration. The severe reduction of CI was also paralleled in post-mortem brain tissue of a MELAS patient carrying high mutant load. Importantly, lowering significantly glucose concentration in cell culture improved CI assembly with a significant reduction of matrix assembly intermediates and respiration capacities were restored in a sequential manner. In addition, OXPHOS protein expression and mitochondrial DNA copy number were significantly increased in mutant cells exposed to glucose restriction. The accumulation of CI matrix intermediates appeared as a hallmark of MELAS pathophysiology highlighting a critical pathophysiological mechanism involving CI disassembly, which can be alleviated by lowering glucose fuelling and the induction of mitochondrial biogenesis, emphasizing the usefulness of metabolic interventions in MELAS syndrome.


Subject(s)
Electron Transport Complex I/metabolism , Glucose/metabolism , MELAS Syndrome/enzymology , Mitochondria/enzymology , Neurons/enzymology , Point Mutation , Cell Line, Tumor , Electron Transport Complex I/genetics , Female , Humans , MELAS Syndrome/genetics , MELAS Syndrome/pathology , Male , Mitochondria/genetics , Mitochondria/pathology , Neurons/pathology , Oxidative Phosphorylation
16.
J Cell Mol Med ; 21(10): 2284-2297, 2017 10.
Article in English | MEDLINE | ID: mdl-28378518

ABSTRACT

Optic Atrophy 1 (OPA1) gene mutations cause diseases ranging from isolated dominant optic atrophy (DOA) to various multisystemic disorders. OPA1, a large GTPase belonging to the dynamin family, is involved in mitochondrial network dynamics. The majority of OPA1 mutations encodes truncated forms of the protein and causes DOA through haploinsufficiency, whereas missense OPA1 mutations are predicted to cause disease through deleterious dominant-negative mechanisms. We used 3D imaging and biochemical analysis to explore autophagy and mitophagy in fibroblasts from seven patients harbouring OPA1 mutations. We report new genotype-phenotype correlations between various types of OPA1 mutation and mitophagy. Fibroblasts bearing dominant-negative OPA1 mutations showed increased autophagy and mitophagy in response to uncoupled oxidative phosphorylation. In contrast, OPA1 haploinsufficiency was correlated with a substantial reduction in mitochondrial turnover and autophagy, unless subjected to experimental mitochondrial injury. Our results indicate distinct alterations of mitochondrial physiology and turnover in cells with OPA1 mutations, suggesting that the level and profile of OPA1 may regulate the rate of mitophagy.


Subject(s)
Autophagy/genetics , GTP Phosphohydrolases/genetics , Mutation , Optic Atrophy, Autosomal Dominant/genetics , Adolescent , Adult , Cells, Cultured , Child, Preschool , Female , Fibroblasts/metabolism , GTP Phosphohydrolases/metabolism , Genetic Association Studies , Humans , Male , Middle Aged , Mitophagy/genetics
17.
Hum Mol Genet ; 24(17): 5015-23, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26071363

ABSTRACT

Acute intermittent porphyria (AIP), an autosomal dominant metabolic disease (MIM #176000), is due to a deficiency of hydroxymethylbilane synthase (HMBS), which catalyzes the third step of the heme biosynthetic pathway. The clinical expression of the disease is mainly neurological, involving the autonomous, central and peripheral nervous systems. We explored mitochondrial oxidative phosphorylation (OXPHOS) in the brain and skeletal muscle of the Hmbs(-/-) mouse model first in the basal state (BS), and then after induction of the disease with phenobarbital and treatment with heme arginate (HA). The modification of the respiratory parameters, determined in mice in the BS, reflected a spontaneous metabolic energetic adaptation to HMBS deficiency. Phenobarbital induced a sharp alteration of the oxidative metabolism with a significant decrease of ATP production in skeletal muscle that was restored by treatment with HA. This OXPHOS defect was due to deficiencies in complexes I and II in the skeletal muscle whereas all four respiratory chain complexes were affected in the brain. To date, the pathogenesis of AIP has been mainly attributed to the neurotoxicity of aminolevulinic acid and heme deficiency. Our results show that mitochondrial energetic failure also plays an important role in the expression of the disease.


Subject(s)
Brain/metabolism , Hydroxymethylbilane Synthase/genetics , Mitochondria/genetics , Mitochondria/metabolism , Muscles/metabolism , Porphyria, Acute Intermittent/genetics , Porphyria, Acute Intermittent/metabolism , Adenosine Triphosphate/biosynthesis , Animals , Brain/drug effects , Disease Models, Animal , Electron Transport Complex I/metabolism , Electron Transport Complex II/metabolism , Enzyme Activation/drug effects , Humans , Mice , Mice, Knockout , Models, Biological , Muscles/drug effects , Phenobarbital/pharmacology
18.
Am J Hum Genet ; 95(6): 637-48, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25466283

ABSTRACT

Galloway-Mowat syndrome is a rare autosomal-recessive condition characterized by nephrotic syndrome associated with microcephaly and neurological impairment. Through a combination of autozygosity mapping and whole-exome sequencing, we identified WDR73 as a gene in which mutations cause Galloway-Mowat syndrome in two unrelated families. WDR73 encodes a WD40-repeat-containing protein of unknown function. Here, we show that WDR73 was present in the brain and kidney and was located diffusely in the cytoplasm during interphase but relocalized to spindle poles and astral microtubules during mitosis. Fibroblasts from one affected child and WDR73-depleted podocytes displayed abnormal nuclear morphology, low cell viability, and alterations of the microtubule network. These data suggest that WDR73 plays a crucial role in the maintenance of cell architecture and cell survival. Altogether, WDR73 mutations cause Galloway-Mowat syndrome in a particular subset of individuals presenting with late-onset nephrotic syndrome, postnatal microcephaly, severe intellectual disability, and homogenous brain MRI features. WDR73 is another example of a gene involved in a disease affecting both the kidney glomerulus and the CNS.


Subject(s)
Hernia, Hiatal/genetics , Intellectual Disability/genetics , Microcephaly/genetics , Nephrosis/genetics , Nephrotic Syndrome/genetics , Proteins/genetics , Adolescent , Brain/physiopathology , Cell Line , Cell Survival , Child , Child, Preschool , Cytosol/metabolism , Exome/genetics , Hernia, Hiatal/physiopathology , Homozygote , Humans , Kidney Glomerulus/physiopathology , Male , Microcephaly/physiopathology , Microtubules/metabolism , Mitosis , Models, Molecular , Mutation , Nephrosis/physiopathology , Nephrotic Syndrome/physiopathology , Podocytes , Protein Transport , Proteins/metabolism , Spindle Poles/metabolism
19.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 284-291, 2017 01.
Article in English | MEDLINE | ID: mdl-27815040

ABSTRACT

Ketogenic Diet used to treat refractory epilepsy for almost a century may represent a treatment option for mitochondrial disorders for which effective treatments are still lacking. Mitochondrial complex I deficiencies are involved in a broad spectrum of inherited diseases including Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-like episodes syndrome leading to recurrent cerebral insults resembling strokes and associated with a severe complex I deficiency caused by mitochondrial DNA (mtDNA) mutations. The analysis of MELAS neuronal cybrid cells carrying the almost homoplasmic m.3243A>G mutation revealed a metabolic switch towards glycolysis with the production of lactic acid, severe defects in respiratory chain activity and complex I disassembly with an accumulation of assembly intermediates. Metabolites, NADH/NAD+ ratio, mitochondrial enzyme activities, oxygen consumption and BN-PAGE analysis were evaluated in mutant compared to control cells. A severe complex I enzymatic deficiency was identified associated with a major complex I disassembly with an accumulation of assembly intermediates of 400kDa. We showed that Ketone Bodies (KB) exposure for 4weeks associated with glucose deprivation significantly restored complex I stability and activity, increased ATP synthesis and reduced the NADH/NAD+ ratio, a key component of mitochondrial metabolism. In addition, without changing the mutant load, mtDNA copy number was significantly increased with KB, indicating that the absolute amount of wild type mtDNA copy number was higher in treated mutant cells. Therefore KB may constitute an alternative and promising therapy for MELAS syndrome, and could be beneficial for other mitochondrial diseases caused by complex I deficiency.


Subject(s)
Electron Transport Complex I/metabolism , Ketone Bodies/pharmacology , MELAS Syndrome/drug therapy , Mitochondria/drug effects , Neurons/drug effects , Adenosine Triphosphate/metabolism , Cell Line , Cell Respiration/drug effects , DNA Copy Number Variations/drug effects , DNA, Mitochondrial/genetics , Diet, Ketogenic , Electron Transport Complex I/deficiency , Humans , MELAS Syndrome/genetics , MELAS Syndrome/metabolism , MELAS Syndrome/pathology , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Diseases/complications , Neurons/metabolism , Neurons/pathology
20.
Brain ; 139(11): 2864-2876, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27633772

ABSTRACT

Leber's hereditary optic neuropathy (MIM#535000), the commonest mitochondrial DNA-related disease, is caused by mutations affecting mitochondrial complex I. The clinical expression of the disorder, usually occurring in young adults, is typically characterized by subacute, usually sequential, bilateral visual loss, resulting from the degeneration of retinal ganglion cells. As the precise action of mitochondrial DNA mutations on the overall cell metabolism in Leber's hereditary optic neuropathy is unknown, we investigated the metabolomic profile of the disease. High performance liquid chromatography coupled with tandem mass spectrometry was used to quantify 188 metabolites in fibroblasts from 16 patients with Leber's hereditary optic neuropathy and eight healthy control subjects. Latent variable-based statistical methods were used to identify discriminating metabolites. One hundred and twenty-four of the metabolites were considered to be accurately quantified. A supervised orthogonal partial least squares discriminant analysis model separating patients with Leber's hereditary optic neuropathy from control subjects showed good predictive capability (Q 2cumulated = 0.57). Thirty-eight metabolites appeared to be the most significant variables, defining a Leber's hereditary optic neuropathy metabolic signature that revealed decreased concentrations of all proteinogenic amino acids, spermidine, putrescine, isovaleryl-carnitine, propionyl-carnitine and five sphingomyelin species, together with increased concentrations of 10 phosphatidylcholine species. This signature was not reproduced by the inhibition of complex I with rotenone or piericidin A in control fibroblasts. The importance of sphingomyelins and phosphatidylcholines in the Leber's hereditary optic neuropathy signature, together with the decreased amino acid pool, suggested an involvement of the endoplasmic reticulum. This was confirmed by the significantly increased phosphorylation of PERK and eIF2α, as well as the greater expression of C/EBP homologous protein and the increased XBP1 splicing, in fibroblasts from affected patients, all these changes being reversed by the endoplasmic reticulum stress inhibitor, TUDCA (tauroursodeoxycholic acid). Thus, our metabolomic analysis reveals a pharmacologically-reversible endoplasmic reticulum stress in complex I-related Leber's hereditary optic neuropathy fibroblasts, a finding that may open up new therapeutic perspectives for the treatment of Leber's hereditary optic neuropathy with endoplasmic reticulum-targeting drugs.


Subject(s)
DNA, Mitochondrial/genetics , Electron Transport Complex I/metabolism , Endoplasmic Reticulum Stress/physiology , Mutation/genetics , Optic Atrophy, Hereditary, Leber/metabolism , Adult , Aged , Cells, Cultured , Cohort Studies , Electron Transport Complex I/genetics , Endoplasmic Reticulum Stress/drug effects , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Insecticides/pharmacology , Male , Metabolomics/methods , Middle Aged , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/pathology , Pyridines/pharmacology , Rotenone/pharmacology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL