Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Immunity ; 56(5): 979-997.e11, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37100060

ABSTRACT

Immune cell trafficking constitutes a fundamental component of immunological response to tissue injury, but the contribution of intrinsic RNA nucleotide modifications to this response remains elusive. We report that RNA editor ADAR2 exerts a tissue- and stress-specific regulation of endothelial responses to interleukin-6 (IL-6), which tightly controls leukocyte trafficking in IL-6-inflamed and ischemic tissues. Genetic ablation of ADAR2 from vascular endothelial cells diminished myeloid cell rolling and adhesion on vascular walls and reduced immune cell infiltration within ischemic tissues. ADAR2 was required in the endothelium for the expression of the IL-6 receptor subunit, IL-6 signal transducer (IL6ST; gp130), and subsequently, for IL-6 trans-signaling responses. ADAR2-induced adenosine-to-inosine RNA editing suppressed the Drosha-dependent primary microRNA processing, thereby overwriting the default endothelial transcriptional program to safeguard gp130 expression. This work demonstrates a role for ADAR2 epitranscriptional activity as a checkpoint in IL-6 trans-signaling and immune cell trafficking to sites of tissue injury.


Subject(s)
Interleukin-6 , RNA , Endothelial Cells/metabolism , Cytokine Receptor gp130 , Endothelium/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism
2.
Nature ; 628(8009): 863-871, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38570687

ABSTRACT

Vertebrate organs require locally adapted blood vessels1,2. The gain of such organotypic vessel specializations is often deemed to be molecularly unrelated to the process of organ vascularization. Here, opposing this model, we reveal a molecular mechanism for brain-specific angiogenesis that operates under the control of Wnt7a/b ligands-well-known blood-brain barrier maturation signals3-5. The control mechanism relies on Wnt7a/b-dependent expression of Mmp25, which we find is enriched in brain endothelial cells. CRISPR-Cas9 mutagenesis in zebrafish reveals that this poorly characterized glycosylphosphatidylinositol-anchored matrix metalloproteinase is selectively required in endothelial tip cells to enable their initial migration across the pial basement membrane lining the brain surface. Mechanistically, Mmp25 confers brain invasive competence by cleaving meningeal fibroblast-derived collagen IV α5/6 chains within a short non-collagenous region of the central helical part of the heterotrimer. After genetic interference with the pial basement membrane composition, the Wnt-ß-catenin-dependent organotypic control of brain angiogenesis is lost, resulting in properly patterned, yet blood-brain-barrier-defective cerebrovasculatures. We reveal an organ-specific angiogenesis mechanism, shed light on tip cell mechanistic angiodiversity and thereby illustrate how organs, by imposing local constraints on angiogenic tip cells, can select vessels matching their distinctive physiological requirements.


Subject(s)
Brain , Neovascularization, Physiologic , Animals , Basement Membrane/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/cytology , Brain/cytology , Brain/blood supply , Brain/metabolism , Cell Movement , Collagen Type IV/metabolism , CRISPR-Cas Systems/genetics , Endothelial Cells/metabolism , Endothelial Cells/cytology , Meninges/cytology , Meninges/blood supply , Meninges/metabolism , Organ Specificity , Wnt Proteins/metabolism , Wnt Signaling Pathway , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics
3.
Proc Natl Acad Sci U S A ; 121(25): e2409269121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38870055

ABSTRACT

Sirtuin 7 (SIRT7) is a member of the mammalian family of nicotinamide adenine dinucleotide (NAD+)-dependent histone/protein deacetylases, known as sirtuins. It acts as a potent oncogene in numerous malignancies, but the molecular mechanisms employed by SIRT7 to sustain lung cancer progression remain largely uncharacterized. We demonstrate that SIRT7 exerts oncogenic functions in lung cancer cells by destabilizing the tumor suppressor alternative reading frame (ARF). SIRT7 directly interacts with ARF and prevents binding of ARF to nucleophosmin, thereby promoting proteasomal-dependent degradation of ARF. We show that SIRT7-mediated degradation of ARF increases expression of protumorigenic genes and stimulates proliferation of non-small-cell lung cancer (NSCLC) cells both in vitro and in vivo in a mouse xenograft model. Bioinformatics analysis of transcriptome data from human lung adenocarcinomas revealed a correlation between SIRT7 expression and increased activity of genes normally repressed by ARF. We propose that disruption of SIRT7-ARF signaling stabilizes ARF and thus attenuates cancer cell proliferation, offering a strategy to mitigate NSCLC progression.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell Proliferation , Disease Progression , Lung Neoplasms , Sirtuins , Humans , Sirtuins/metabolism , Sirtuins/genetics , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Animals , Mice , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
4.
Circ Res ; 132(11): 1468-1485, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37042252

ABSTRACT

BACKGROUND: The ability of the right ventricle (RV) to adapt to an increased pressure afterload determines survival in patients with pulmonary arterial hypertension. At present, there are no specific treatments available to prevent RV failure, except for heart/lung transplantation. The wingless/int-1 (Wnt) signaling pathway plays an important role in the development of the RV and may also be implicated in adult cardiac remodeling. METHODS: Molecular, biochemical, and pharmacological approaches were used both in vitro and in vivo to investigate the role of Wnt signaling in RV remodeling. RESULTS: Wnt/ß-catenin signaling molecules are upregulated in RV of patients with pulmonary arterial hypertension and animal models of RV overload (pulmonary artery banding-induced and monocrotaline rat models). Activation of Wnt/ß-catenin signaling leads to RV remodeling via transcriptional activation of FOSL1 and FOSL2 (FOS proto-oncogene [FOS] like 1/2, AP-1 [activator protein 1] transcription factor subunit). Immunohistochemical analysis of pulmonary artery banding -exposed BAT-Gal (ß-catenin-activated transgene driving expression of nuclear ß-galactosidase) reporter mice RVs exhibited an increase in ß-catenin expression compared with their respective controls. Genetic inhibition of ß-catenin, FOSL1/2, or WNT3A stimulation of RV fibroblasts significantly reduced collagen synthesis and other remodeling genes. Importantly, pharmacological inhibition of Wnt signaling using inhibitor of PORCN (porcupine O-acyltransferase), LGKK-974 attenuated fibrosis and cardiac hypertrophy leading to improvement in RV function in both, pulmonary artery banding - and monocrotaline-induced RV overload. CONCLUSIONS: Wnt- ß-Catenin-FOSL signaling is centrally involved in the hypertrophic RV response to increased afterload, offering novel targets for therapeutic interference with RV failure in pulmonary hypertension.


Subject(s)
Heart Failure , Pulmonary Arterial Hypertension , Rats , Mice , Animals , Ventricular Remodeling , beta Catenin , Catenins , Monocrotaline/toxicity , Signal Transduction , Disease Models, Animal , Ventricular Function, Right
5.
Circ Res ; 133(10): 842-857, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37800327

ABSTRACT

BACKGROUND: Advanced age is unequivocally linked to the development of cardiovascular disease; however, the mechanisms resulting in reduced endothelial cell regeneration remain poorly understood. Here, we investigated novel mechanisms involved in endothelial cell senescence that impact endothelial cell transcription and vascular repair after injury. METHODS: Native endothelial cells were isolated from young (20±3.4 years) and aged (80±2.3 years) individuals and subjected to molecular analyses to assess global transcriptional and metabolic changes. In vitro studies were conducted using primary human and murine endothelial cells. A murine aortic re-endothelialization model was used to examine endothelial cell regenerative capacity in vivo. RESULTS: RNA sequencing of native endothelial cells revealed that aging resulted in p53-mediated reprogramming to express senescence-associated genes and suppress glycolysis. Reduced glucose uptake and ATP contributed to attenuated assembly of the telomerase complex, which was required for endothelial cell proliferation. Enhanced p53 activity in aging was linked to its acetylation on K120 due to enhanced activity of the acetyltransferase MOZ (monocytic leukemic zinc finger). Mechanistically, p53 acetylation and translocation were, at least partially, attributed to the loss of the vasoprotective enzyme, CSE (cystathionine γ-lyase). CSE physically anchored p53 in the cytosol to prevent its nuclear translocation and CSE absence inhibited AKT (Protein kinase B)-mediated MOZ phosphorylation, which in turn increased MOZ activity and subsequently p53 acetylation. In mice, the endothelial cell-specific deletion of CSE activated p53, induced premature endothelial senescence, and arrested vascular repair after injury. In contrast, the adeno-associated virus 9-mediated re-expression of an active CSE mutant retained p53 in the cytosol, maintained endothelial glucose metabolism and proliferation, and prevented endothelial cell senescence. Adenoviral overexpression of CSE in native endothelial cells from aged individuals maintained low p53 activity and reactivated telomerase to revert endothelial cell senescence. CONCLUSIONS: Aging-associated impairment of vascular repair is partly determined by the vasoprotective enzyme CSE.


Subject(s)
Hydrogen Sulfide , Telomerase , Animals , Humans , Mice , Cellular Senescence , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/metabolism , Endothelial Cells/metabolism , Hydrogen Sulfide/metabolism , Telomerase/genetics , Telomerase/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
6.
Proc Natl Acad Sci U S A ; 119(24): e2201707119, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35671428

ABSTRACT

A number of inflammatory lung diseases, including chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and pneumonia, are modulated by WNT/ß-catenin signaling. However, the underlying molecular mechanisms remain unclear. Here, starting with a forward genetic screen in mouse, we identify the WNT coreceptor Related to receptor tyrosine kinase (RYK) acting in mesenchymal tissues as a cell survival and antiinflammatory modulator. Ryk mutant mice exhibit lung hypoplasia and inflammation as well as alveolar simplification due to defective secondary septation, and deletion of Ryk specifically in mesenchymal cells also leads to these phenotypes. By analyzing the transcriptome of wild-type and mutant lungs, we observed the up-regulation of proapoptotic and inflammatory genes whose expression can be repressed by WNT/RYK signaling in vitro. Moreover, mesenchymal Ryk deletion at postnatal and adult stages can also lead to lung inflammation, thus indicating a continued role for WNT/RYK signaling in homeostasis. Our results indicate that RYK signaling through ß-catenin and Nuclear Factor kappa B (NF-κB) is part of a safeguard mechanism against mesenchymal cell death, excessive inflammatory cytokine production, and inflammatory cell recruitment and accumulation. Notably, RYK expression is down-regulated in the stromal cells of pneumonitis patient lungs. Altogether, our data reveal that RYK signaling plays critical roles as an antiinflammatory modulator during lung development and homeostasis and provide an animal model to further investigate the etiology of, and therapeutic approaches to, inflammatory lung diseases.


Subject(s)
Pneumonia , Receptor Protein-Tyrosine Kinases , Wnt Signaling Pathway , beta Catenin , Animals , Humans , Lung/enzymology , Lung/growth & development , Mesoderm/metabolism , Mice , NF-kappa B/metabolism , Pneumonia/enzymology , Pneumonia/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Stromal Cells/metabolism , beta Catenin/genetics , beta Catenin/metabolism
7.
Circ Res ; 130(7): 1014-1029, 2022 04.
Article in English | MEDLINE | ID: mdl-35264012

ABSTRACT

BACKGROUND: Ischemic heart disease following the obstruction of coronary vessels leads to the death of cardiac tissue and the formation of a fibrotic scar. In contrast to adult mammals, zebrafish can regenerate their heart after injury, enabling the study of the underlying mechanisms. One of the earliest responses following cardiac injury in adult zebrafish is coronary revascularization. Defects in this process lead to impaired cardiomyocyte repopulation and scarring. Hence, identifying and investigating factors that promote coronary revascularization holds great therapeutic potential. METHODS: We used wholemount imaging, immunohistochemistry and histology to assess various aspects of zebrafish cardiac regeneration. Deep transcriptomic analysis allowed us to identify targets and potential effectors of Vegfc (vascular endothelial growth factor C) signaling. We used newly generated loss- and gain-of-function genetic tools to investigate the role of Emilin2a (elastin microfibril interfacer 2a) and Cxcl8a (chemokine (C-X-C) motif ligand 8a)-Cxcr1 (chemokine (C-X-C) motif receptor 1) signaling in cardiac regeneration. RESULTS: We first show that regenerating coronary endothelial cells upregulate vegfc upon cardiac injury in adult zebrafish and that Vegfc signaling is required for their proliferation during regeneration. Notably, blocking Vegfc signaling also significantly reduces cardiomyocyte dedifferentiation and proliferation. Using transcriptomic analyses, we identified emilin2a as a target of Vegfc signaling and found that manipulation of emilin2a expression can modulate coronary revascularization as well as cardiomyocyte proliferation. Mechanistically, Emilin2a induces the expression of the chemokine gene cxcl8a in epicardium-derived cells, while cxcr1, the Cxcl8a receptor gene, is expressed in coronary endothelial cells. We further show that Cxcl8a-Cxcr1 signaling is also required for coronary endothelial cell proliferation during cardiac regeneration. CONCLUSIONS: These data show that after cardiac injury, coronary endothelial cells upregulate vegfc to promote coronary network reestablishment and cardiac regeneration. Mechanistically, Vegfc signaling upregulates epicardial emilin2a and cxcl8a expression to promote cardiac regeneration. These studies aid in understanding the mechanisms underlying coronary revascularization in zebrafish, with potential therapeutic implications to enhance revascularization and regeneration in injured human hearts.


Subject(s)
Interleukin-8 , Membrane Glycoproteins , Myocytes, Cardiac , Regeneration , Vascular Endothelial Growth Factor C , Zebrafish Proteins , Zebrafish , Animals , Cell Proliferation , Endothelial Cells/metabolism , Heart/physiology , Interleukin-8/metabolism , Membrane Glycoproteins/metabolism , Myocytes, Cardiac/physiology , Regeneration/physiology , Vascular Endothelial Growth Factor C/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
8.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Article in English | MEDLINE | ID: mdl-33495326

ABSTRACT

Adaptation to different forms of environmental stress is crucial for maintaining essential cellular functions and survival. The nucleolus plays a decisive role as a signaling hub for coordinating cellular responses to various extrinsic and intrinsic cues. p53 levels are normally kept low in unstressed cells, mainly due to E3 ubiquitin ligase MDM2-mediated degradation. Under stress, nucleophosmin (NPM) relocates from the nucleolus to the nucleoplasm and binds MDM2, thereby preventing degradation of p53 and allowing cell-cycle arrest and DNA repair. Here, we demonstrate that the mammalian sirtuin SIRT7 is an essential component for the regulation of p53 stability during stress responses induced by ultraviolet (UV) irradiation. The catalytic activity of SIRT7 is substantially increased upon UV irradiation through ataxia telangiectasia mutated and Rad3 related (ATR)-mediated phosphorylation, which promotes efficient deacetylation of the SIRT7 target NPM. Deacetylation is required for stress-dependent relocation of NPM into the nucleoplasm and MDM2 binding, thereby preventing ubiquitination and degradation of p53. In the absence of SIRT7, stress-dependent stabilization of p53 is abrogated, both in vitro and in vivo, impairing cellular stress responses. The study uncovers an essential SIRT7-dependent mechanism for stabilization of the tumor suppressor p53 in response to genotoxic stress.


Subject(s)
DNA Damage , Nuclear Proteins/metabolism , Sirtuins/metabolism , Tumor Suppressor Protein p53/metabolism , Ultraviolet Rays , Acetylation/radiation effects , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Catalysis/radiation effects , Cell Line, Tumor , Cell Nucleolus/metabolism , Cell Nucleolus/radiation effects , Humans , Lysine/metabolism , Mice , Mice, Inbred C57BL , Nucleophosmin , Phosphorylation/radiation effects , Protein Stability/radiation effects , Proto-Oncogene Proteins c-mdm2/metabolism , Transcription, Genetic/radiation effects , Ubiquitination/radiation effects
9.
EMBO J ; 38(12)2019 06 17.
Article in English | MEDLINE | ID: mdl-31028085

ABSTRACT

Bronchioalveolar stem cells (BASCs) are a potential source for lung regeneration, but direct in vivo evidence for a multipotential lineage contribution during homeostasis and disease is critically missing, since specific genetic labeling of BASCs has not been possible. We developed a novel cell tracing approach based on intein-mediated assembly of newly engineered split-effectors, allowing selective targeting of dual-marker expressing BASCs in the mouse lung. RNA sequencing of isolated BASCs demonstrates that BASCs show a distinct transcriptional profile, characterized by co-expression of bronchiolar and alveolar epithelial genes. We found that BASCs generate the majority of distal lung airway cells after bronchiolar damage but only moderately contribute to cellular turnover under homeostatic conditions. Importantly, DTA-mediated ablation of BASCs compromised proper regeneration of distal airways. The study defines BASCs as crucial components of the lung repair machinery and provides a paradigmatic example for the detection and manipulation of stem cells that cannot be recognized by a single marker alone.


Subject(s)
Adult Stem Cells/physiology , Pulmonary Alveoli/cytology , Regeneration/physiology , Respiratory Mucosa/physiology , Adult Stem Cells/cytology , Animals , Cell Proliferation/physiology , Cells, Cultured , Embryo, Mammalian , HEK293 Cells , Humans , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Respiratory Mucosa/cytology
10.
Stem Cells ; 40(6): 605-617, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35437594

ABSTRACT

Bronchopulmonary dysplasia (BPD) is a neonatal lung disease developing in premature babies characterized by arrested alveologenesis and associated with decreased Fibroblast growth factor 10 (FGF10) expression. One-week hyperoxia (HYX) exposure of newborn mice leads to a permanent arrest in alveologenesis. To test the role of Fgf10 signaling to promote de novo alveologenesis following hyperoxia, we used transgenic mice allowing inducible expression of Fgf10 and recombinant FGF10 (rFGF10) protein delivered intraperitoneally. We carried out morphometry analysis, and IF on day 45. Alveolospheres assays were performed co-culturing AT2s from normoxia (NOX) with FACS-isolated Sca1Pos resident mesenchymal cells (rMC) from animals exposed to NOX, HYX-PBS, or HYX-FGF10. scRNAseq between rMC-Sca1Pos isolated from NOX and HYX-PBS was also carried out. Transgenic overexpression of Fgf10 and rFGF10 administration rescued the alveologenesis defects following HYX. Alveolosphere assays indicate that the activity of rMC-Sca1Pos is negatively impacted by HYX and partially rescued by rFGF10 treatment. Analysis by IF demonstrates a significant impact of rFGF10 on the activity of resident mesenchymal cells. scRNAseq results identified clusters expressing Fgf10, Fgf7, Pdgfra, and Axin2, which could represent the rMC niche cells for the AT2 stem cells. In conclusion, we demonstrate that rFGF10 administration is able to induce de novo alveologenesis in a BPD mouse model and identified subpopulations of rMC-Sca1Pos niche cells potentially representing its cellular target.


Subject(s)
Bronchopulmonary Dysplasia , Hyperoxia , Animals , Animals, Newborn , Bronchopulmonary Dysplasia/genetics , Bronchopulmonary Dysplasia/metabolism , Fibroblast Growth Factor 10/genetics , Fibroblast Growth Factor 10/metabolism , Humans , Hyperoxia/metabolism , Infant, Newborn , Lung/metabolism , Mice , Mice, Transgenic
11.
Dev Biol ; 476: 259-271, 2021 08.
Article in English | MEDLINE | ID: mdl-33857482

ABSTRACT

Contrary to adult mammals, zebrafish are able to regenerate their heart after cardiac injury. This regenerative response relies, in part, on the endogenous ability of cardiomyocytes (CMs) to dedifferentiate and proliferate to replenish the lost muscle. However, CM heterogeneity and population dynamics during development and regeneration require further investigation. Through comparative transcriptomic analyses of the developing and adult zebrafish heart, we identified tnnc2 and tnni4b.3 expression as markers for CMs at early and late developmental stages, respectively. Using newly developed reporter lines for these genes, we investigated their expression dynamics during heart development and regeneration. tnnc2 reporter lines label most CMs at embryonic stages, and this labeling declines rapidly during larval stages; in adult hearts, tnnc2 reporter expression is only detectable in a small subset of CMs. Conversely, expression of a tnni4b.3 reporter is initially visible in CMs in the outer curvature of the ventricle at larval stages, and it is subsequently present in a vast majority of the CMs in adult hearts. To further characterize the adult CMs labeled by the tnnc2 (i.e., embryonic) reporter, we performed transcriptomic analyses and found that they express markers of immature CMs as well as genes encoding components of the Notch signaling pathway. In support of this finding, we observed, using two different reporters, that these CMs display higher levels of Notch signaling. Moreover, during adult heart regeneration, CMs in the injured area activate the embryonic CM reporter and downregulate the tnni4b.3 reporter, further highlighting the molecular changes in regenerating CMs. Overall, our findings provide additional evidence for CM heterogeneity in adult zebrafish.


Subject(s)
Heart/embryology , Myocytes, Cardiac/metabolism , Regeneration/physiology , Animals , Cell Proliferation , Heart Ventricles/metabolism , Myocardium/metabolism , Myocytes, Cardiac/cytology , Signal Transduction , Zebrafish/embryology , Zebrafish Proteins/genetics
12.
Circ Res ; 126(12): 1760-1778, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32312172

ABSTRACT

RATIONALE: The adult human heart is an organ with low regenerative potential. Heart failure following acute myocardial infarction is a leading cause of death due to the inability of cardiomyocytes to proliferate and replenish lost cardiac muscle. While the zebrafish has emerged as a powerful model to study endogenous cardiac regeneration, the molecular mechanisms by which cardiomyocytes respond to damage by disassembling sarcomeres, proliferating, and repopulating the injured area remain unclear. Furthermore, we are far from understanding the regulation of the chromatin landscape and epigenetic barriers that must be overcome for cardiac regeneration to occur. OBJECTIVE: To identify transcription factor regulators of the chromatin landscape, which promote cardiomyocyte regeneration in zebrafish, and investigate their function. METHODS AND RESULTS: Using the Assay for Transposase-Accessible Chromatin coupled to high-throughput sequencing (ATAC-Seq), we first find that the regenerating cardiomyocyte chromatin accessibility landscape undergoes extensive changes following cryoinjury, and that activator protein-1 (AP-1) binding sites are the most highly enriched motifs in regions that gain accessibility during cardiac regeneration. Furthermore, using bioinformatic and gene expression analyses, we find that the AP-1 response in regenerating adult zebrafish cardiomyocytes is largely different from the response in adult mammalian cardiomyocytes. Using a cardiomyocyte-specific dominant negative approach, we show that blocking AP-1 function leads to defects in cardiomyocyte proliferation as well as decreased chromatin accessibility at the fbxl22 and ilk loci, which regulate sarcomere disassembly and cardiomyocyte protrusion into the injured area, respectively. We further show that overexpression of the AP-1 family members Junb and Fosl1 can promote changes in mammalian cardiomyocyte behavior in vitro. CONCLUSIONS: AP-1 transcription factors play an essential role in the cardiomyocyte response to injury by regulating chromatin accessibility changes, thereby allowing the activation of gene expression programs that promote cardiomyocyte dedifferentiation, proliferation, and protrusion into the injured area.


Subject(s)
Chromatin/metabolism , Myocytes, Cardiac/metabolism , Regeneration , Sarcomeres/metabolism , Transcription Factor AP-1/metabolism , Animals , Cells, Cultured , Myocytes, Cardiac/physiology , Protein Serine-Threonine Kinases/genetics , Rats , Rats, Sprague-Dawley , Sarcomeres/physiology , Transcription Factor AP-1/genetics , Zebrafish , Zebrafish Proteins/genetics
13.
EMBO Rep ; 21(8): e49752, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32648304

ABSTRACT

Cardiac metabolism plays a crucial role in producing sufficient energy to sustain cardiac function. However, the role of metabolism in different aspects of cardiomyocyte regeneration remains unclear. Working with the adult zebrafish heart regeneration model, we first find an increase in the levels of mRNAs encoding enzymes regulating glucose and pyruvate metabolism, including pyruvate kinase M1/2 (Pkm) and pyruvate dehydrogenase kinases (Pdks), especially in tissues bordering the damaged area. We further find that impaired glycolysis decreases the number of proliferating cardiomyocytes following injury. These observations are supported by analyses using loss-of-function models for the metabolic regulators Pkma2 and peroxisome proliferator-activated receptor gamma coactivator 1 alpha. Cardiomyocyte-specific loss- and gain-of-function manipulations of pyruvate metabolism using Pdk3 as well as a catalytic subunit of the pyruvate dehydrogenase complex (PDC) reveal its importance in cardiomyocyte dedifferentiation and proliferation after injury. Furthermore, we find that PDK activity can modulate cell cycle progression and protrusive activity in mammalian cardiomyocytes in culture. Our findings reveal new roles for cardiac metabolism and the PDK-PDC axis in cardiomyocyte behavior following cardiac injury.


Subject(s)
Myocytes, Cardiac , Zebrafish , Animals , Cell Proliferation , Glycolysis , Myocytes, Cardiac/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Zebrafish/metabolism
14.
EMBO Rep ; 21(10): e47533, 2020 10 05.
Article in English | MEDLINE | ID: mdl-33252195

ABSTRACT

Naïve pluripotency can be established in human pluripotent stem cells (hPSCs) by manipulation of transcription factors, signaling pathways, or a combination thereof. However, differences exist in the molecular and functional properties of naïve hPSCs generated by different protocols, which include varying similarities with pre-implantation human embryos, differentiation potential, and maintenance of genomic integrity. We show here that short treatment with two chemical agonists (2a) of nuclear receptors, liver receptor homologue-1 (LRH-1) and retinoic acid receptor gamma (RAR-γ), along with 2i/LIF (2a2iL) induces naïve-like pluripotency in human cells during reprogramming of fibroblasts, conversion of pre-established hPSCs, and generation of new cell lines from blastocysts. 2a2iL-hPSCs match several defined criteria of naïve-like pluripotency and contribute to human-mouse interspecies chimeras. Activation of TGF-ß signaling is instrumental for acquisition of naïve-like pluripotency by the 2a2iL induction procedure, and transient activation of TGF-ß signaling substitutes for 2a to generate naïve-like hPSCs. We reason that 2a2iL-hPSCs are an easily attainable system to evaluate properties of naïve-like hPSCs and for various applications.


Subject(s)
Pluripotent Stem Cells , Animals , Blastocyst , Cell Differentiation , Cell Line , Humans , Mice , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Retinoic Acid , Retinoic Acid Receptor gamma
15.
Proc Natl Acad Sci U S A ; 116(48): 24115-24121, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31704768

ABSTRACT

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. The major AF susceptibility locus 4q25 establishes long-range interactions with the promoter of PITX2, a transcription factor gene with critical functions during cardiac development. While many AF-linked loci have been identified in genome-wide association studies, mechanistic understanding into how genetic variants, including those at the 4q25 locus, increase vulnerability to AF is mostly lacking. Here, we show that loss of pitx2c in zebrafish leads to adult cardiac phenotypes with substantial similarities to pathologies observed in AF patients, including arrhythmia, atrial conduction defects, sarcomere disassembly, and altered cardiac metabolism. These phenotypes are also observed in a subset of pitx2c+/- fish, mimicking the situation in humans. Most notably, the onset of these phenotypes occurs at an early developmental stage. Detailed analyses of pitx2c loss- and gain-of-function embryonic hearts reveal changes in sarcomeric and metabolic gene expression and function that precede the onset of cardiac arrhythmia first observed at larval stages. We further find that antioxidant treatment of pitx2c-/- larvae significantly reduces the incidence and severity of cardiac arrhythmia, suggesting that metabolic dysfunction is an important driver of conduction defects. We propose that these early sarcomere and metabolic defects alter cardiac function and contribute to the electrical instability and structural remodeling observed in adult fish. Overall, these data provide insight into the mechanisms underlying the development and pathophysiology of some cardiac arrhythmias and importantly, increase our understanding of how developmental perturbations can predispose to functional defects in the adult heart.


Subject(s)
Arrhythmias, Cardiac/metabolism , Homeodomain Proteins/genetics , Sarcomeres/metabolism , Transcription Factors/genetics , Zebrafish Proteins/genetics , Zebrafish/genetics , Acetylcysteine/pharmacology , Animals , Animals, Genetically Modified , Antioxidants/pharmacology , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/etiology , Cardiac Conduction System Disease/etiology , Cardiac Conduction System Disease/genetics , Cardiomyopathies/genetics , Cardiomyopathies/physiopathology , Disease Models, Animal , Electrocardiography , Gene Expression Regulation , Homeodomain Proteins/metabolism , Larva/drug effects , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Sarcomeres/genetics , Sarcomeres/pathology , Stress, Physiological/genetics , Transcription Factors/metabolism , Zebrafish Proteins/metabolism
16.
Proc Natl Acad Sci U S A ; 116(51): 25697-25706, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31776260

ABSTRACT

Goblet cell metaplasia and mucus hypersecretion are observed in many pulmonary diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. However, the regulation of goblet cell differentiation remains unclear. Here, we identify a regulator of this process in an N-ethyl-N-nitrosourea (ENU) screen for modulators of postnatal lung development; Ryk mutant mice exhibit lung inflammation, goblet cell hyperplasia, and mucus hypersecretion. RYK functions as a WNT coreceptor, and, in the developing lung, we observed high RYK expression in airway epithelial cells and moderate expression in mesenchymal cells as well as in alveolar epithelial cells. From transcriptomic analyses and follow-up studies, we found decreased WNT/ß-catenin signaling activity in the mutant lung epithelium. Epithelial-specific Ryk deletion causes goblet cell hyperplasia and mucus hypersecretion but not inflammation, while club cell-specific Ryk deletion in adult stages leads to goblet cell hyperplasia and mucus hypersecretion during regeneration. We also found that the airway epithelium of COPD patients often displays goblet cell metaplastic foci, as well as reduced RYK expression. Altogether, our findings reveal that RYK plays important roles in maintaining the balance between airway epithelial cell populations during development and repair, and that defects in RYK expression or function may contribute to the pathogenesis of human lung diseases.


Subject(s)
Cell Differentiation/physiology , Goblet Cells , Lung , Receptor Protein-Tyrosine Kinases/metabolism , Wnt Signaling Pathway/physiology , A549 Cells , Animals , Goblet Cells/cytology , Goblet Cells/metabolism , Goblet Cells/physiology , Humans , Hyperplasia/metabolism , Hyperplasia/pathology , Lung/cytology , Lung/growth & development , Lung/metabolism , Mice , Mucus/metabolism , Pneumonia/metabolism , Pneumonia/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , beta Catenin/metabolism
18.
PLoS Genet ; 14(11): e1007743, 2018 11.
Article in English | MEDLINE | ID: mdl-30457989

ABSTRACT

Development and function of tissues and organs are powered by the activity of mitochondria. In humans, inherited genetic mutations that lead to progressive mitochondrial pathology often manifest during infancy and can lead to death, reflecting the indispensable nature of mitochondrial biogenesis and function. Here, we describe a zebrafish mutant for the gene mia40a (chchd4a), the life-essential homologue of the evolutionarily conserved Mia40 oxidoreductase which drives the biogenesis of cysteine-rich mitochondrial proteins. We report that mia40a mutant animals undergo progressive cellular respiration defects and develop enlarged mitochondria in skeletal muscles before their ultimate death at the larval stage. We generated a deep transcriptomic and proteomic resource that allowed us to identify abnormalities in the development and physiology of endodermal organs, in particular the liver and pancreas. We identify the acinar cells of the exocrine pancreas to be severely affected by mutations in the MIA pathway. Our data contribute to a better understanding of the molecular, cellular and organismal effects of mitochondrial deficiency, important for the accurate diagnosis and future treatment strategies of mitochondrial diseases.

19.
Circ Res ; 122(1): 31-46, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29158345

ABSTRACT

RATIONALE: Human cardiac mesenchymal cells (CMSCs) are a therapeutically relevant primary cell population. Diabetes mellitus compromises CMSC function as consequence of metabolic alterations and incorporation of stable epigenetic changes. OBJECTIVE: To investigate the role of α-ketoglutarate (αKG) in the epimetabolic control of DNA demethylation in CMSCs. METHODS AND RESULTS: Quantitative global analysis, methylated and hydroxymethylated DNA sequencing, and gene-specific GC methylation detection revealed an accumulation of 5-methylcytosine, 5-hydroxymethylcytosine, and 5-formylcytosine in the genomic DNA of human CMSCs isolated from diabetic donors. Whole heart genomic DNA analysis revealed iterative oxidative cytosine modification accumulation in mice exposed to high-fat diet (HFD), injected with streptozotocin, or both in combination (streptozotocin/HFD). In this context, untargeted and targeted metabolomics indicated an intracellular reduction of αKG synthesis in diabetic CMSCs and in the whole heart of HFD mice. This observation was paralleled by a compromised TDG (thymine DNA glycosylase) and TET1 (ten-eleven translocation protein 1) association and function with TET1 relocating out of the nucleus. Molecular dynamics and mutational analyses showed that αKG binds TDG on Arg275 providing an enzymatic allosteric activation. As a consequence, the enzyme significantly increased its capacity to remove G/T nucleotide mismatches or 5-formylcytosine. Accordingly, an exogenous source of αKG restored the DNA demethylation cycle by promoting TDG function, TET1 nuclear localization, and TET/TDG association. TDG inactivation by CRISPR/Cas9 knockout or TET/TDG siRNA knockdown induced 5-formylcytosine accumulation, thus partially mimicking the diabetic epigenetic landscape in cells of nondiabetic origin. The novel compound (S)-2-[(2,6-dichlorobenzoyl)amino]succinic acid (AA6), identified as an inhibitor of αKG dehydrogenase, increased the αKG level in diabetic CMSCs and in the heart of HFD and streptozotocin mice eliciting, in HFD, DNA demethylation, glucose uptake, and insulin response. CONCLUSIONS: Restoring the epimetabolic control of DNA demethylation cycle promises beneficial effects on cells compromised by environmental metabolic changes.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Ketoglutaric Acids/metabolism , Mesenchymal Stem Cells/metabolism , Mixed Function Oxygenases/metabolism , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins/metabolism , Thymine DNA Glycosylase/metabolism , Animals , Cells, Cultured , Cytosine/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/pathology , Enzyme Inhibitors/pharmacology , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Ketoglutaric Acids/antagonists & inhibitors , Male , Mesenchymal Stem Cells/drug effects , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Oxidation-Reduction/drug effects
20.
Basic Res Cardiol ; 114(5): 36, 2019 08 09.
Article in English | MEDLINE | ID: mdl-31399804

ABSTRACT

Individual adult ventricular cardiomyocytes are either mono- or multi-nucleated and undergo morphological changes during cardiac hypertrophy. However, corresponding transcriptional signatures, reflecting potentially different functions or the ability for cell-cycle entry, are not known. The aim of this study was to determine the transcriptional profile of mono- and multi-nucleated adult cardiomyocytes by single-cell RNA-sequencing (scRNA-seq) and to investigate heterogeneity among cardiomyocytes under baseline conditions and in pressure-induced cardiac hypertrophy. We developed an array-based approach for scRNA-seq of rod-shaped multi-nucleated cardiomyocytes from both healthy and hypertrophic hearts. Single-cell transcriptomes of mono- or multi-nucleated cardiomyocytes were highly similar, although a certain degree of variation was noted across both populations. Non-image-based quality control allowing inclusion of damaged cardiomyocytes generated artificial cell clusters demonstrating the need for strict exclusion criteria. In contrast, cardiomyocytes isolated from hypertrophic heart after transverse aortic constriction showed heterogeneous transcriptional signatures, characteristic for hypoxia-induced responses. Immunofluorescence analysis revealed an inverse correlation between HIF1α+ cells and CD31-stained vessels, suggesting that imbalanced vascular growth in the hypertrophied heart induces cellular heterogeneity. Our study demonstrates that individual mono- and multi-nucleated cardiomyocytes express nearly identical sets of genes. Homogeneity among cardiomyocytes was lost after induction of hypertrophy due to differential HIF1α-dependent responses most likely caused by none-homogenous vessel growth.


Subject(s)
Cardiomegaly/pathology , Heart Ventricles/cytology , Myocytes, Cardiac/cytology , Transcriptome , Animals , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL