Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Journal subject
Affiliation country
Publication year range
1.
Chemistry ; 26(19): 4389-4395, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31943417

ABSTRACT

A textbook dysprosium dinuclear complex based on acetylacetone ligands, [Dy2 (acac)4 (µ2 -acac)2 (H2 O)2 ], has been synthesized and fully characterized. This simple dimeric lanthanide complex shows well-resolved solid-state luminescence and behaves as a single-molecule magnet under zero DC field. A seminal crystal-field approach is used to marry both magnetism and luminescence in the frame of an energetic picture.

2.
Inorg Chem ; 58(20): 13509-13527, 2019 Oct 21.
Article in English | MEDLINE | ID: mdl-31247877

ABSTRACT

According to the amyloid cascade hypothesis, metal ions, mainly Cu and Zn ions, bound to the amyloid-ß (Aß) peptides are implicated in Alzheimer's disease (AD), a widespread neurodegenerative disease. They indeed impact the aggregation pathways of Aß and are involved in the catalytic generation of reactive oxygen species (ROS) that participate in oxidative stress, while Aß aggregation and oxidative stress are regarded as two key events in AD etiology. Cu ions due to their redox ability have been considered to be the main potential therapeutic targets in AD. A considerable number of ligands have been developed in order to modulate the toxicity associated with Cu in this context, via disruption of the Aß-Cu interaction. Among them, small synthetic ligands and small peptide scaffolds have been designed and studied for their ability to remove Cu from Aß. Some of those ligands are able to prevent Cu(Aß)-induced ROS production and can modify the aggregation pathways of Aß in vitro and in cellulo. Examples of such ligands are gathered in this Viewpoint, as a function of their structures and discussed with respect to their properties against Cu(Aß) deleterious fallouts. Nevertheless, the beneficial activities of the most promising ligands detected in vitro and in cellulo have not been transposed to human yet. Some parameters that might explain this apparent contradiction and key concepts to consider for the design of "more" efficient ligands are thus reported and discussed. En passant, this Viewpoint sheds light on the difficulties in comparing the results from one study to another that hamper significant advances in the field.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Copper/metabolism , Organic Chemicals/metabolism , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/antagonists & inhibitors , Cell Survival/drug effects , Humans , Organic Chemicals/pharmacology , Reactive Oxygen Species/metabolism , Zinc/metabolism
3.
Angew Chem Int Ed Engl ; 57(52): 17089-17093, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30411438

ABSTRACT

Molecular materials that possess a toroidal moment associated to a non-magnetic ground state are known as single-molecule toroics (SMTs) and are usually planar molecules. Herein, we report a Dy4 cubane, namely [Dy4 (Bppd)4 (µ3 -OH)4 (Pa)4 (H2 O)4 ]⋅0.333 H2 O (where BppdH=1,3-Bis(pyridin-4-yl)propane-1,3-dione and PaH=2-Picolinic acid) for which magnetometry measurements and state-of-art ab initio calculations highlight SMT behavior in a tridimensional structure (3D-SMT). The in-depth theoretical analysis on the resulting low-lying energy states, along with their variation in function of the magnetic exchange pathways, allows further light to be shed on the description of single-molecule toroics and identify the coupling scheme that better reproduces the observed data.

SELECTION OF CITATIONS
SEARCH DETAIL