Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Cereb Cortex ; 33(6): 2804-2822, 2023 03 10.
Article in English | MEDLINE | ID: mdl-35771593

ABSTRACT

Joint music performance requires flexible sensorimotor coordination between self and other. Cognitive and sensory parameters of joint action-such as shared knowledge or temporal (a)synchrony-influence this coordination by shifting the balance between self-other segregation and integration. To investigate the neural bases of these parameters and their interaction during joint action, we asked pianists to play on an MR-compatible piano, in duet with a partner outside of the scanner room. Motor knowledge of the partner's musical part and the temporal compatibility of the partner's action feedback were manipulated. First, we found stronger activity and functional connectivity within cortico-cerebellar audio-motor networks when pianists had practiced their partner's part before. This indicates that they simulated and anticipated the auditory feedback of the partner by virtue of an internal model. Second, we observed stronger cerebellar activity and reduced behavioral adaptation when pianists encountered subtle asynchronies between these model-based anticipations and the perceived sensory outcome of (familiar) partner actions, indicating a shift towards self-other segregation. These combined findings demonstrate that cortico-cerebellar audio-motor networks link motor knowledge and other-produced sounds depending on cognitive and sensory factors of the joint performance, and play a crucial role in balancing self-other integration and segregation.


Subject(s)
Music , Psychomotor Performance , Music/psychology , Adaptation, Physiological , Feedback, Sensory
2.
Cereb Cortex ; 32(18): 4110-4127, 2022 09 04.
Article in English | MEDLINE | ID: mdl-35029645

ABSTRACT

When people interact with each other, their brains synchronize. However, it remains unclear whether interbrain synchrony (IBS) is functionally relevant for social interaction or stems from exposure of individual brains to identical sensorimotor information. To disentangle these views, the current dual-EEG study investigated amplitude-based IBS in pianists jointly performing duets containing a silent pause followed by a tempo change. First, we manipulated the similarity of the anticipated tempo change and measured IBS during the pause, hence, capturing the alignment of purely endogenous, temporal plans without sound or movement. Notably, right posterior gamma IBS was higher when partners planned similar tempi, it predicted whether partners' tempi matched after the pause, and it was modulated only in real, not in surrogate pairs. Second, we manipulated the familiarity with the partner's actions and measured IBS during joint performance with sound. Although sensorimotor information was similar across conditions, gamma IBS was higher when partners were unfamiliar with each other's part and had to attend more closely to the sound of the performance. These combined findings demonstrate that IBS is not merely an epiphenomenon of shared sensorimotor information but can also hinge on endogenous, cognitive processes crucial for behavioral synchrony and successful social interaction.


Subject(s)
Brain Mapping , Interpersonal Relations , Music , Humans , Brain , Diencephalon , Movement
SELECTION OF CITATIONS
SEARCH DETAIL