Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Genes Dev ; 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36008139

ABSTRACT

YAP1 is a transcriptional coactivator regulated by the Hippo signaling pathway, including NF2. Meningiomas are the most common primary brain tumors; a large percentage exhibit heterozygous loss of chromosome 22 (harboring the NF2 gene) and functional inactivation of the remaining NF2 copy, implicating oncogenic YAP activity in these tumors. Recently, fusions between YAP1 and MAML2 have been identified in a subset of pediatric NF2 wild-type meningiomas. Here, we show that human YAP1-MAML2-positive meningiomas resemble NF2 mutant meningiomas by global and YAP-related gene expression signatures. We then show that expression of YAP1-MAML2 in mice induces tumors that resemble human YAP1 fusion-positive and NF2 mutant meningiomas by gene expression. We demonstrate that YAP1-MAML2 primarily functions by exerting TEAD-dependent YAP activity that is resistant to Hippo signaling. Treatment with YAP-TEAD inhibitors is sufficient to inhibit the viability of YAP1-MAML2-driven mouse tumors ex vivo. Finally, we show that expression of constitutively active YAP1 (S127/397A-YAP1) is sufficient to induce similar tumors, suggesting that the YAP component of the gene fusion is the critical driver of these tumors. In summary, our results implicate YAP1-MAML2 as a causal oncogenic driver and highlight TEAD-dependent YAP activity as an oncogenic driver in YAP1-MAML2 fusion meningioma as well as NF2 mutant meningioma in general.

2.
Cell ; 159(4): 844-56, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25417160

ABSTRACT

Wnt signaling plays a critical role in embryonic development, and genetic aberrations in this network have been broadly implicated in colorectal cancer. We find that the Wnt receptor Frizzled2 (Fzd2) and its ligands Wnt5a/b are elevated in metastatic liver, lung, colon, and breast cancer cell lines and in high-grade tumors and that their expression correlates with markers of epithelial-mesenchymal transition (EMT). Pharmacologic and genetic perturbations reveal that Fzd2 drives EMT and cell migration through a previously unrecognized, noncanonical pathway that includes Fyn and Stat3. A gene signature regulated by this pathway predicts metastasis and overall survival in patients. We have developed an antibody to Fzd2 that reduces cell migration and invasion and inhibits tumor growth and metastasis in xenografts. We propose that targeting this pathway could provide benefit for patients with tumors expressing high levels of Fzd2 and Wnt5a/b.


Subject(s)
Cell Movement , Epithelial-Mesenchymal Transition , Frizzled Receptors/metabolism , Wnt Signaling Pathway , Animals , Cell Line, Tumor , Heterografts , Humans , Mice, Nude , Neoplasm Metastasis/pathology , Neoplasm Transplantation , STAT3 Transcription Factor/metabolism , Wnt Proteins/metabolism
3.
Genes Dev ; 34(15-16): 1051-1064, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32675324

ABSTRACT

YAP1 is a transcriptional coactivator and the principal effector of the Hippo signaling pathway, which is causally implicated in human cancer. Several YAP1 gene fusions have been identified in various human cancers and identifying the essential components of this family of gene fusions has significant therapeutic value. Here, we show that the YAP1 gene fusions YAP1-MAMLD1, YAP1-FAM118B, YAP1-TFE3, and YAP1-SS18 are oncogenic in mice. Using reporter assays, RNA-seq, ChIP-seq, and loss-of-function mutations, we can show that all of these YAP1 fusion proteins exert TEAD-dependent YAP activity, while some also exert activity of the C'-terminal fusion partner. The YAP activity of the different YAP1 fusions is resistant to negative Hippo pathway regulation due to constitutive nuclear localization and resistance to degradation of the YAP1 fusion proteins. Genetic disruption of the TEAD-binding domain of these oncogenic YAP1 fusions is sufficient to inhibit tumor formation in vivo, while pharmacological inhibition of the YAP1-TEAD interaction inhibits the growth of YAP1 fusion-expressing cell lines in vitro. These results highlight TEAD-dependent YAP activity found in these gene fusions as critical for oncogenesis and implicate these YAP functions as potential therapeutic targets in YAP1 fusion-positive tumors.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carcinogenesis/genetics , Oncogene Proteins, Fusion/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cells, Cultured , Gene Expression Regulation , Humans , Mice , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Nuclear Localization Signals , Nucleotide Motifs , Oncogene Proteins, Fusion/antagonists & inhibitors , Oncogene Proteins, Fusion/chemistry , Proteasome Endopeptidase Complex/metabolism , Signal Transduction , Transcription Factors/metabolism , Transcription, Genetic
4.
PLoS Genet ; 20(3): e1011216, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38512964

ABSTRACT

Fibrolamellar carcinoma (FLC) is a rare liver cancer that disproportionately affects adolescents and young adults. Currently, no standard of care is available and there remains a dire need for new therapeutics. Most patients harbor the fusion oncogene DNAJB1-PRKACA (DP fusion), but clinical inhibitors are not yet developed and it is critical to identify downstream mediators of FLC pathogenesis. Here, we identify long noncoding RNA LINC00473 among the most highly upregulated genes in FLC tumors and determine that it is strongly suppressed by RNAi-mediated inhibition of the DP fusion in FLC tumor epithelial cells. We show by loss- and gain-of-function studies that LINC00473 suppresses apoptosis, increases the expression of FLC marker genes, and promotes FLC growth in cell-based and in vivo disease models. Mechanistically, LINC00473 plays an important role in promoting glycolysis and altering mitochondrial activity. Specifically, LINC00473 knockdown leads to increased spare respiratory capacity, which indicates mitochondrial fitness. Overall, we propose that LINC00473 could be a viable target for this devastating disease.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Adolescent , Humans , Young Adult , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/genetics , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , Liver Neoplasms/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
5.
PLoS Pathog ; 19(9): e1011169, 2023 09.
Article in English | MEDLINE | ID: mdl-37669313

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human diseases including Kaposi's sarcoma (KS), a leading cause of cancer in Africa and in patients with AIDS. KS tumor cells harbor KSHV predominantly in a latent form, while typically <5% contain lytic replicating virus. Because both latent and lytic stages likely contribute to cancer initiation and progression, continued dissection of host regulators of this biological switch will provide insights into fundamental pathways controlling the KSHV life cycle and related disease pathogenesis. Several cellular protein kinases have been reported to promote or restrict KSHV reactivation, but our knowledge of these signaling mediators and pathways is incomplete. We employed a polypharmacology-based kinome screen to identify specific kinases that regulate KSHV reactivation. Those identified by the screen and validated by knockdown experiments included several kinases that enhance lytic reactivation: ERBB2 (HER2 or neu), ERBB3 (HER3), ERBB4 (HER4), MKNK2 (MNK2), ITK, TEC, and DSTYK (RIPK5). Conversely, ERBB1 (EGFR1 or HER1), MKNK1 (MNK1) and FRK (PTK5) were found to promote the maintenance of latency. Mechanistic characterization of ERBB2 pro-lytic functions revealed a signaling connection between ERBB2 and the activation of CREB1, a transcription factor that drives KSHV lytic gene expression. These studies provided a proof-of-principle application of a polypharmacology-based kinome screen for the study of KSHV reactivation and enabled the discovery of both kinase inhibitors and specific kinases that regulate the KSHV latent-to-lytic replication switch.


Subject(s)
Herpesvirus 8, Human , Sarcoma, Kaposi , Humans , Herpesvirus 8, Human/genetics , Polypharmacology , Africa , Cognition , Protein Serine-Threonine Kinases , Intracellular Signaling Peptides and Proteins , Receptor-Interacting Protein Serine-Threonine Kinases
6.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Article in English | MEDLINE | ID: mdl-34593636

ABSTRACT

Castration-resistant prostate cancer (CRPC) is an advanced subtype of prostate cancer with limited therapeutic options. Here, we applied a systems-based modeling approach called kinome regularization (KiR) to identify multitargeted kinase inhibitors (KIs) that abrogate CRPC growth. Two predicted KIs, PP121 and SC-1, suppressed CRPC growth in two-dimensional in vitro experiments and in vivo subcutaneous xenografts. An ex vivo bone mimetic environment and in vivo tibia xenografts revealed resistance to these KIs in bone. Combining PP121 or SC-1 with docetaxel, standard-of-care chemotherapy for late-stage CRPC, significantly reduced tibia tumor growth in vivo, decreased growth factor signaling, and vastly extended overall survival, compared to either docetaxel monotherapy. These results highlight the utility of computational modeling in forming physiologically relevant predictions and provide evidence for the role of multitargeted KIs as chemosensitizers for late-stage, metastatic CRPC.


Subject(s)
Antineoplastic Agents/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Protein Kinase Inhibitors/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Computer Simulation , Docetaxel/pharmacology , Humans , Male , Mice , PC-3 Cells
7.
Gut ; 72(2): 325-337, 2023 02.
Article in English | MEDLINE | ID: mdl-35705369

ABSTRACT

OBJECTIVE: Programmed cell death protein 1 (PD-1) checkpoint inhibition and adoptive cellular therapy have had limited success in patients with microsatellite stable colorectal cancer liver metastases (CRLM). We sought to evaluate the effect of interleukin 10 (IL-10) blockade on endogenous T cell and chimeric antigen receptor T (CAR-T) cell antitumour function in CRLM slice cultures. DESIGN: We created organotypic slice cultures from human CRLM (n=38 patients' tumours) and tested the antitumour effects of a neutralising antibody against IL-10 (αIL-10) both alone as treatment and in combination with exogenously administered carcinoembryonic antigen (CEA)-specific CAR-T cells. We evaluated slice cultures with single and multiplex immunohistochemistry, in situ hybridisation, single-cell RNA sequencing, reverse-phase protein arrays and time-lapse fluorescent microscopy. RESULTS: αIL-10 generated a 1.8-fold increase in T cell-mediated carcinoma cell death in human CRLM slice cultures. αIL-10 significantly increased proportions of CD8+ T cells without exhaustion transcription changes, and increased human leukocyte antigen - DR isotype (HLA-DR) expression of macrophages. The antitumour effects of αIL-10 were reversed by major histocompatibility complex class I or II (MHC-I or MHC-II) blockade, confirming the essential role of antigen presenting cells. Interrupting IL-10 signalling also rescued murine CAR-T cell proliferation and cytotoxicity from myeloid cell-mediated immunosuppression. In human CRLM slices, αIL-10 increased CEA-specific CAR-T cell activation and CAR-T cell-mediated cytotoxicity, with nearly 70% carcinoma cell apoptosis across multiple human tumours. Pretreatment with an IL-10 receptor blocking antibody also potentiated CAR-T function. CONCLUSION: Neutralising the effects of IL-10 in human CRLM has therapeutic potential as a stand-alone treatment and to augment the function of adoptively transferred CAR-T cells.


Subject(s)
Carcinoma , Colorectal Neoplasms , Interleukin-10 , Liver Neoplasms , Receptors, Chimeric Antigen , Receptors, Interleukin-10 , Animals , Humans , Mice , Carcinoembryonic Antigen/immunology , Carcinoma/immunology , Carcinoma/secondary , CD8-Positive T-Lymphocytes/immunology , Colorectal Neoplasms/pathology , Immunotherapy, Adoptive , Interleukin-10/antagonists & inhibitors , Liver Neoplasms/immunology , Liver Neoplasms/secondary , Lymphocyte Activation , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Receptors, Interleukin-10/antagonists & inhibitors , Antibodies, Blocking/immunology
8.
J Cell Sci ; 134(8)2021 04 15.
Article in English | MEDLINE | ID: mdl-33722977

ABSTRACT

The α-arrestin domain containing protein 3 (ARRDC3) is a tumor suppressor in triple-negative breast carcinoma (TNBC), a highly metastatic subtype of breast cancer that lacks targeted therapies. Thus, understanding the mechanisms and targets of ARRDC3 in TNBC is important. ARRDC3 regulates trafficking of protease-activated receptor 1 (PAR1, also known as F2R), a G-protein-coupled receptor (GPCR) implicated in breast cancer metastasis. Loss of ARRDC3 causes overexpression of PAR1 and aberrant signaling. Moreover, dysregulation of GPCR-induced Hippo signaling is associated with breast cancer progression. However, the mechanisms responsible for Hippo dysregulation remain unknown. Here, we report that the Hippo pathway transcriptional co-activator TAZ (also known as WWTR1) is the major effector of GPCR signaling and is required for TNBC migration and invasion. Additionally, ARRDC3 suppresses PAR1-induced Hippo signaling via sequestration of TAZ, which occurs independently of ARRDC3-regulated PAR1 trafficking. The ARRDC3 C-terminal PPXY motifs and TAZ WW domain are crucial for this interaction and are required for suppression of TNBC migration and lung metastasis in vivo. These studies are the first to demonstrate a role for ARRDC3 in regulating GPCR-induced TAZ activity in TNBC and reveal multi-faceted tumor suppressor functions of ARRDC3. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Breast Neoplasms , Arrestins/metabolism , Breast Neoplasms/genetics , Female , Humans , Receptor, PAR-1/genetics , Receptor, PAR-1/metabolism , Signal Transduction , Transcription Factors
9.
Mol Syst Biol ; 17(9): e10426, 2021 09.
Article in English | MEDLINE | ID: mdl-34486798

ABSTRACT

Although 15-20% of COVID-19 patients experience hyper-inflammation induced by massive cytokine production, cellular triggers of this process and strategies to target them remain poorly understood. Here, we show that the N-terminal domain (NTD) of the SARS-CoV-2 spike protein substantially induces multiple inflammatory molecules in myeloid cells and human PBMCs. Using a combination of phenotypic screening with machine learning-based modeling, we identified and experimentally validated several protein kinases, including JAK1, EPHA7, IRAK1, MAPK12, and MAP3K8, as essential downstream mediators of NTD-induced cytokine production, implicating the role of multiple signaling pathways in cytokine release. Further, we found several FDA-approved drugs, including ponatinib, and cobimetinib as potent inhibitors of the NTD-mediated cytokine release. Treatment with ponatinib outperforms other drugs, including dexamethasone and baricitinib, inhibiting all cytokines in response to the NTD from SARS-CoV-2 and emerging variants. Finally, ponatinib treatment inhibits lipopolysaccharide-mediated cytokine release in myeloid cells in vitro and lung inflammation mouse model. Together, we propose that agents targeting multiple kinases required for SARS-CoV-2-mediated cytokine release, such as ponatinib, may represent an attractive therapeutic option for treating moderate to severe COVID-19.


Subject(s)
Antiviral Agents/pharmacology , Cytokines/metabolism , Host-Pathogen Interactions/physiology , Animals , Azetidines/pharmacology , Host-Pathogen Interactions/drug effects , Humans , Imidazoles/pharmacology , Interleukin-1 Receptor-Associated Kinases/metabolism , Janus Kinase 1/metabolism , Lipopolysaccharides/toxicity , Machine Learning , Male , Mice , Mice, Inbred C57BL , Neutrophils/virology , Protein Kinase Inhibitors/pharmacology , Purines/pharmacology , Pyrazoles/pharmacology , Pyridazines/pharmacology , RAW 264.7 Cells , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Sulfonamides/pharmacology
10.
Proc Natl Acad Sci U S A ; 114(18): E3729-E3738, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28416665

ABSTRACT

Chemotherapy is widely used for cancer treatment, but its effectiveness is limited by drug resistance. Here, we report a mechanism by which cell density activates the Hippo pathway, which in turn inactivates YAP, leading to changes in the regulation of genes that control the intracellular concentrations of gemcitabine and several other US Food and Drug Administration (FDA)-approved oncology drugs. Hippo inactivation sensitizes a diverse panel of cell lines and human tumors to gemcitabine in 3D spheroid, mouse xenografts, and patient-derived xenograft models. Nuclear YAP enhances gemcitabine effectiveness by down-regulating multidrug transporters as well by converting gemcitabine to a less active form, both leading to its increased intracellular availability. Cancer cell lines carrying genetic aberrations that impair the Hippo signaling pathway showed heightened sensitivity to gemcitabine. These findings suggest that "switching off" of the Hippo-YAP pathway could help to prevent or reverse resistance to some cancer therapies.


Subject(s)
Cytotoxins/pharmacology , Deoxycytidine/analogs & derivatives , Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line , Deoxycytidine/pharmacology , Hippo Signaling Pathway , Humans , Mice , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Serine-Threonine Kinases/genetics , Signal Transduction/genetics , Transcription Factors , Xenograft Model Antitumor Assays , YAP-Signaling Proteins , Gemcitabine
11.
Elife ; 122024 Feb 02.
Article in English | MEDLINE | ID: mdl-38305363

ABSTRACT

Cytokines and chemokines are secreted proteins that regulate various biological processes, such as inflammation, immune response, and cell differentiation. Therefore, disruption of signaling pathways involving these proteins has been linked to a range of diseases, including cancer. However, targeting individual cytokines, chemokines, or their receptors is challenging due to their regulatory redundancy and incomplete understanding of their signaling networks. To transform these difficult-to-drug targets into a pharmacologically manageable class, we developed a web-based platform called KinCytE. This platform was designed to link the effects of kinase inhibitors, a well-established class of drugs, with cytokine and chemokine release and signaling networks. The resulting KinCytE platform enables users to investigate protein kinases that regulate specific cytokines or chemokines, generate a ranked list of FDA-approved kinase inhibitors that affect cytokine/chemokine activity, and explore and visualize cytokine signaling network thus facilitating drugging this challenging target class. KinCytE is freely accessible via https://atlas.fredhutch.org/kincyte.


Subject(s)
Chemokines , Cytokines , Humans , Cytokines/metabolism , Chemokines/metabolism , Signal Transduction/physiology , Inflammation
12.
Lab Chip ; 24(10): 2683-2699, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38651213

ABSTRACT

Cancer drug testing in animals is an extremely poor predictor of the drug's safety and efficacy observed in humans. Hence there is a pressing need for functional testing platforms that better predict traditional and immunotherapy responses in human, live tumor tissue or tissue constructs, and at the same time are compatible with the use of mouse tumor tissue to facilitate building more accurate disease models. Since many cancer drug actions rely on mechanisms that depend on the tumor microenvironment (TME), such platforms should also retain as much of the native TME as possible. Additionally, platforms based on miniaturization technologies are desirable to reduce animal use and sensitivity to human tissue scarcity. Present high-throughput testing platforms that have some of these features, e.g. based on patient-derived tumor organoids, require a growth step that alters the TME. On the other hand, microdissected tumors (µDTs) or "spheroids" that retain an intact TME have shown promising responses to immunomodulators acting on native immune cells. However, difficult tissue handling after microdissection has reduced the throughput of drug testing on µDTs, thereby constraining the inherent advantages of producing numerous TME-preserving units of tissue for drug testing. Here we demonstrate a microfluidic 96-well platform designed for drug treatment of hundreds of similarly-sized, cuboidal µDTs ("cuboids") produced from a single tumor sample. The platform organizes a monodisperse array of four cuboids per well in 384 hydrodynamic traps. The microfluidic device, entirely fabricated in thermoplastics, features 96 microvalves that fluidically isolate each well after the cuboid loading step for straightforward multi-drug testing. Since our platform makes the most of scarce tumor tissue, it can potentially be applied to human biopsies that preserve the human TME while minimizing animal testing.


Subject(s)
Antineoplastic Agents , Drug Screening Assays, Antitumor , Lab-On-A-Chip Devices , Humans , Animals , Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor/instrumentation , Mice , Tumor Microenvironment/drug effects , Microfluidic Analytical Techniques/instrumentation , Equipment Design , Cell Line, Tumor , Neoplasms/drug therapy
13.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38586030

ABSTRACT

The small amount of human tissue available for testing is a paramount challenge in cancer drug development, cancer disease models, and personalized oncology. Technologies that combine the microscale manipulation of tissues with fluid handling offer the exciting possibility of miniaturizing and automating drug evaluation workflows. This approach minimizes animal testing and enables inexpensive, more efficient testing of samples with high clinical biomimicry using scarce materials. We have developed an inexpensive platform based on an off-the-shelf robot that can manipulate microdissected tissues (µDTs) into user-programmed positions without using intricate microfluidic designs nor any other accessories such as a microscope or a pneumatic controller. The robot integrates complex functions such as vision and fluid actuation by incorporating simple items including a USB camera and a rotary pump. Through the robot's camera, the platform software optically recognizes randomly-seeded µDTs on the surface of a petri dish and positions a mechanical arm above the µDTs. Then, a custom rotary pump actuated by one of the robot's motors generates enough microfluidic lift to hydrodynamically pick and place µDTs with a pipette at a safe distance from the substrate without requiring a proximity sensor. The platform's simple, integrated construction is cost-effective and compact, allowing placement inside a tissue culture hood for sterile workflows. The platform enables users to select µDTs based on their size, place them in user-programmed arrays, such as multi-well plates, and control various robot motion parameters. As a case application, we use the robotic system to conduct semi-automated drug testing of mouse and human µDTs in 384-well plates. Our user-friendly platform promises to democratize microscale tissue research to clinical and biological laboratories worldwide.

14.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585935

ABSTRACT

Present cancer disease models - typically based on cell cultures and animal models that lack the human tumor microenvironment (TME) - are extremely poor predictors of human disease outcomes. Microscale cancer models that combine the micromanipulation of tissues and fluids offer the exciting possibility of miniaturizing the drug testing workflow, enabling inexpensive, more efficient tests of high clinical biomimicry that maximize the use of scarce human tissue and minimize animal testing. Critically, these microscale models allow for precisely addressing the impact of the structural features of the heterogeneous TME to properly target and understand the contributions of these unique zones to therapeutic response. We have recently developed a precision slicing method that yields large numbers of cuboidal micro-tissues ("cuboids", ∼ (400 µm) 3 ) from a single tumor biopsy. Here we evaluate cuboids from syngeneic mouse tumor models and human tumors, which contain native immune cells, as models for drug and immunotherapy evaluation. We characterize relevant TME parameters, such as their cellular architecture (immune cells and vasculature), cytokine secretion, proteomics profiles, and their response to drug panels in multi-well arrays. Despite the cutting procedure and the time spent in culture (up to 7 days), the cuboids display strong functional responses such as cytokine and drug responses. Overall, our results suggest that cuboids make an excellent model for applications that require the TME, such as immunotherapy drug evaluations, including for clinical trials and personalized oncology approaches.

15.
bioRxiv ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37786680

ABSTRACT

Isocitrate dehydrogenase (IDH)-mutant gliomas have distinctive metabolic and biological traits that may render them susceptible to targeted treatments. Here, by conducting a high-throughput drug screen, we pinpointed a specific susceptibility of IDH-mutant gliomas to zotiraciclib (ZTR). ZTR exhibited selective growth inhibition across multiple IDH-mutant glioma in vitro and in vivo models. Mechanistically, ZTR at low doses suppressed CDK9 and RNA Pol II phosphorylation in IDH-mutant cells, disrupting mitochondrial function and NAD+ production, causing oxidative stress. Integrated biochemical profiling of ZTR kinase targets and transcriptomics unveiled that ZTR-induced bioenergetic failure was linked to the suppression of PIM kinase activity. We posit that the combination of mitochondrial dysfunction and an inability to adapt to oxidative stress resulted in significant cell death upon ZTR treatment, ultimately increasing the therapeutic vulnerability of IDH-mutant gliomas. These findings prompted a clinical trial evaluating ZTR in IDH-mutant gliomas towards precision medicine ( NCT05588141 ). Highlights: Zotiraciclib (ZTR), a CDK9 inhibitor, hinders IDH-mutant glioma growth in vitro and in vivo . ZTR halts cell cycle, disrupts respiration, and induces oxidative stress in IDH-mutant cells.ZTR unexpectedly inhibits PIM kinases, impacting mitochondria and causing bioenergetic failure.These findings led to the clinical trial NCT05588141, evaluating ZTR for IDH-mutant gliomas.

16.
Hum Mutat ; 34(1): 132-42, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22837065

ABSTRACT

The REarranged during Transfection (RET) gene encodes a receptor tyrosine kinase required for maturation of the enteric nervous system. RET sequence variants occur in the congenital abnormality Hirschsprung disease (HSCR), characterized by absence of ganglia in the intestinal tract. Although HSCR-RET variants are predicted to inactivate RET, the molecular mechanisms of these events are not well characterized. Using structure-based models of RET, we predicted the molecular consequences of 23 HSCR-associated missense variants and how they lead to receptor dysfunction. We validated our predictions in biochemical and cell-based assays to explore mutational effects on RET protein functions. We found a minority of HSCR-RET variants abrogated RET kinase function, while the remaining mutants were phosphorylated and transduced intracellular signals. HSCR-RET sequence variants also impacted on maturation, stability, and degradation of RET proteins. We showed that each variant conferred a unique combination of effects that together impaired RET protein activity. However, all tested variants impaired RET-mediated cellular functions, including cell transformation and migration. Our data indicate that the molecular mechanisms of impaired RET function in HSCR are highly variable. Although a subset of variants cause loss of RET kinase activity and downstream signaling, enzymatic inactivation is not the sole mechanism at play in HSCR.


Subject(s)
Hirschsprung Disease/genetics , Mutation , Proto-Oncogene Proteins c-ret/genetics , Binding Sites/genetics , Blotting, Western , Cell Movement/genetics , HEK293 Cells , Hirschsprung Disease/metabolism , Humans , Models, Molecular , Phosphorylation , Protein Structure, Secondary , Protein Structure, Tertiary , Proto-Oncogene Proteins c-ret/chemistry , Proto-Oncogene Proteins c-ret/metabolism , RNA Stability/genetics , Signal Transduction/genetics , Transfection
17.
Proc Natl Acad Sci U S A ; 107(5): 1870-5, 2010 Feb 02.
Article in English | MEDLINE | ID: mdl-20080678

ABSTRACT

A generalized platform for introducing a diverse range of biomolecules into living cells in high-throughput could transform how complex cellular processes are probed and analyzed. Here, we demonstrate spatially localized, efficient, and universal delivery of biomolecules into immortalized and primary mammalian cells using surface-modified vertical silicon nanowires. The method relies on the ability of the silicon nanowires to penetrate a cell's membrane and subsequently release surface-bound molecules directly into the cell's cytosol, thus allowing highly efficient delivery of biomolecules without chemical modification or viral packaging. This modality enables one to assess the phenotypic consequences of introducing a broad range of biological effectors (DNAs, RNAs, peptides, proteins, and small molecules) into almost any cell type. We show that this platform can be used to guide neuronal progenitor growth with small molecules, knock down transcript levels by delivering siRNAs, inhibit apoptosis using peptides, and introduce targeted proteins to specific organelles. We further demonstrate codelivery of siRNAs and proteins on a single substrate in a microarray format, highlighting this technology's potential as a robust, monolithic platform for high-throughput, miniaturized bioassays.


Subject(s)
Drug Delivery Systems/methods , Nanowires/chemistry , Silicon/chemistry , Animals , Base Sequence , Cells, Cultured , HeLa Cells , Humans , Luminescent Proteins/genetics , Microscopy, Electron, Scanning , Nanowires/ultrastructure , Plasmids/administration & dosage , Plasmids/genetics , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Rats , Recombinant Proteins/genetics , Transfection
18.
Front Aging Neurosci ; 15: 1060186, 2023.
Article in English | MEDLINE | ID: mdl-37261265

ABSTRACT

Introduction: The development and maintenance of neural circuits is highly sensitive to neural activity. General anesthetics have profound effects on neural activity and, as such, there is concern that these agents may alter cellular integrity and interfere with brain wiring, such as when exposure occurs during the vulnerable period of brain development. Under those conditions, exposure to anesthetics in clinical use today causes changes in synaptic strength and number, widespread apoptosis, and long-lasting cognitive impairment in a variety of animal models. Remarkably, most anesthetics produce these effects despite having differing receptor mechanisms of action. We hypothesized that anesthetic agents mediate these effects by inducing a shared signaling pathway. Methods: We exposed cultured cortical cells to propofol, etomidate, or dexmedetomidine and assessed the protein levels of dozens of signaling molecules and post-translational modifications using reverse phase protein arrays. To probe the role of neural activity, we performed separate control experiments to alter neural activity with non-anesthetics. Having identified anesthetic-induced changes in vitro, we investigated expression of the target proteins in the cortex of sevoflurane anesthetized postnatal day 7 mice by Western blotting. Results: All the anesthetic agents tested in vitro reduced phosphorylation of the ribosomal protein S6, an important member of the mTOR signaling pathway. We found a comparable decrease in cortical S6 phosphorylation by Western blotting in sevoflurane anesthetized neonatal mice. Using a systems approach, we determined that propofol, etomidate, dexmedetomidine, and APV/TTX all similarly modulate a signaling module that includes pS6 and other cell mediators of the mTOR-signaling pathway. Discussion: Reduction in S6 phosphorylation and subsequent suppression of the mTOR pathway may be a common and novel signaling event that mediates the impact of general anesthetics on neural circuit development.

19.
BME Front ; 4: 0022, 2023.
Article in English | MEDLINE | ID: mdl-37849667

ABSTRACT

In the era of personalized oncology, there have been accelerated efforts to develop clinically relevant platforms to test drug sensitivities of individual cancers. An ideal assay will serve as a diagnostic companion to inform the oncologist of the various treatments that are sensitive and insensitive, thus improving outcome while minimizing unnecessary toxicities and costs. To date, no such platform exists for clinical use, but promising approaches are on the horizon that take advantage of improved techniques in creating human cancer models that encompass the entire tumor microenvironment, alongside technologies for assessing and analyzing tumor response. This review summarizes a number of current strategies that make use of intact human cancer tissues as organotypic cultures in drug sensitivity testing.

20.
Mol Cancer Res ; 21(1): 51-61, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36112348

ABSTRACT

Aberrant metabolic functions play a crucial role in prostate cancer progression and lethality. Currently, limited knowledge is available on subtype-specific metabolic features and their implications for treatment. We therefore investigated the metabolic determinants of the two major subtypes of castration-resistant prostate cancer [androgen receptor-expressing prostate cancer (ARPC) and aggressive variant prostate cancer (AVPC)]. Transcriptomic analyses revealed enrichment of gene sets involved in oxidative phosphorylation (OXPHOS) in ARPC tumor samples compared with AVPC. Unbiased screening of metabolic signaling pathways in patient-derived xenograft models by proteomic analyses further supported an enrichment of OXPHOS in ARPC compared with AVPC, and a skewing toward glycolysis by AVPC. In vitro, ARPC C4-2B cells depended on aerobic respiration, while AVPC PC3 cells relied more heavily on glycolysis, as further confirmed by pharmacologic interference using IACS-10759, a clinical-grade inhibitor of OXPHOS. In vivo studies confirmed IACS-10759's inhibitory effects in subcutaneous and bone-localized C4-2B tumors, and no effect in subcutaneous PC3 tumors. Unexpectedly, IACS-10759 inhibited PC3 tumor growth in bone, indicating microenvironment-induced metabolic reprogramming. These results suggest that castration-resistant ARPC and AVPC exhibit different metabolic dependencies, which can further undergo metabolic reprogramming in bone. IMPLICATIONS: These vulnerabilities may be exploited with mechanistically novel treatments, such as those targeting OXPHOS alone or possibly in combination with existing therapies. In addition, our findings underscore the impact of the tumor microenvironment in reprogramming prostate cancer metabolism.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Proteomics , Prostatic Neoplasms/metabolism , Prostate/pathology , Glycolysis , Oxidative Phosphorylation , Prostatic Neoplasms, Castration-Resistant/metabolism , Cell Line, Tumor , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL