Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Mol Cell Proteomics ; 21(4): 100215, 2022 04.
Article in English | MEDLINE | ID: mdl-35189333

ABSTRACT

Syntrophus aciditrophicus is a model syntrophic bacterium that degrades fatty and aromatic acids into acetate, CO2, formate, and H2 that are utilized by methanogens and other hydrogen-consuming microbes. S. aciditrophicus benzoate degradation proceeds by a multistep pathway with many intermediate reactive acyl-coenzyme A species (RACS) that can potentially Nε-acylate lysine residues. Herein, we describe the identification and characterization of acyl-lysine modifications that correspond to RACS in the benzoate degradation pathway. The amounts of modified peptides are sufficient to analyze the post-translational modifications without antibody enrichment, enabling a range of acylations located, presumably, on the most extensively acylated proteins throughout the proteome to be studied. Seven types of acyl modifications were identified, six of which correspond directly to RACS that are intermediates in the benzoate degradation pathway including 3-hydroxypimeloylation, a modification first identified in this system. Indeed, benzoate-degrading enzymes are heavily represented among the acylated proteins. A total of 125 sites were identified in 60 proteins. Functional deacylase enzymes are present in the proteome, indicating a potential regulatory system/mechanism by which S. aciditrophicus modulates acylation. Uniquely, Nε-acyl-lysine RACS are highly abundant in these syntrophic bacteria, raising the compelling possibility that post-translational modifications modulate benzoate degradation in this and potentially other, syntrophic bacteria. Our results outline candidates for further study of how acylations impact syntrophic consortia.


Subject(s)
Deltaproteobacteria , Proteome , Bacteria/metabolism , Benzoates/metabolism , Deltaproteobacteria/metabolism , Lysine/metabolism , Proteome/metabolism
2.
Environ Microbiol ; 21(5): 1833-1846, 2019 05.
Article in English | MEDLINE | ID: mdl-30895699

ABSTRACT

Syntrophy is essential for the efficient conversion of organic carbon to methane in natural and constructed environments, but little is known about the enzymes involved in syntrophic carbon and electron flow. Syntrophus aciditrophicus strain SB syntrophically degrades benzoate and cyclohexane-1-carboxylate and catalyses the novel synthesis of benzoate and cyclohexane-1-carboxylate from crotonate. We used proteomic, biochemical and metabolomic approaches to determine what enzymes are used for fatty, aromatic and alicyclic acid degradation versus for benzoate and cyclohexane-1-carboxylate synthesis. Enzymes involved in the metabolism of cyclohex-1,5-diene carboxyl-CoA to acetyl-CoA were in high abundance in S. aciditrophicus cells grown in pure culture on crotonate and in coculture with Methanospirillum hungatei on crotonate, benzoate or cyclohexane-1-carboxylate. Incorporation of 13 C-atoms from 1-[13 C]-acetate into crotonate, benzoate and cyclohexane-1-carboxylate during growth on these different substrates showed that the pathways are reversible. A protein conduit for syntrophic reverse electron transfer from acyl-CoA intermediates to formate was detected. Ligases and membrane-bound pyrophosphatases make pyrophosphate needed for the synthesis of ATP by an acetyl-CoA synthetase. Syntrophus aciditrophicus, thus, uses a core set of enzymes that operates close to thermodynamic equilibrium to conserve energy in a novel and highly efficient manner.


Subject(s)
Acids/metabolism , Bacterial Proteins/metabolism , Deltaproteobacteria/metabolism , Acetates/metabolism , Acetyl Coenzyme A/metabolism , Acids/chemistry , Acyl Coenzyme A/metabolism , Bacterial Proteins/genetics , Benzoates/metabolism , Cyclohexanecarboxylic Acids/metabolism , Deltaproteobacteria/enzymology , Deltaproteobacteria/genetics , Electron Transport , Methane/metabolism , Methanospirillum/metabolism , Proteomics
3.
EMBO Rep ; 18(9): 1660-1670, 2017 09.
Article in English | MEDLINE | ID: mdl-28729461

ABSTRACT

Archaeal swimming motility is driven by archaella: rotary motors attached to long extracellular filaments. The structure of these motors, and particularly how they are anchored in the absence of a peptidoglycan cell wall, is unknown. Here, we use electron cryotomography to visualize the archaellar basal body in vivo in Thermococcus kodakaraensis KOD1. Compared to the homologous bacterial type IV pilus (T4P), we observe structural similarities as well as several unique features. While the position of the cytoplasmic ATPase appears conserved, it is not braced by linkages that extend upward through the cell envelope as in the T4P, but rather by cytoplasmic components that attach it to a large conical frustum up to 500 nm in diameter at its base. In addition to anchoring the lophotrichous bundle of archaella, the conical frustum associates with chemosensory arrays and ribosome-excluding material and may function as a polar organizing center for the coccoid cells.


Subject(s)
Cell Surface Extensions/ultrastructure , Cytoplasm/ultrastructure , Thermococcus/physiology , Thermococcus/ultrastructure , Adenosine Triphosphatases/metabolism , Archaeal Proteins/metabolism , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Cell Surface Extensions/physiology , Cryoelectron Microscopy , Cytoplasm/physiology , Flagella/physiology , Flagella/ultrastructure , Thermococcus/cytology
4.
Annu Rev Microbiol ; 66: 429-52, 2012.
Article in English | MEDLINE | ID: mdl-22803797

ABSTRACT

Syntrophy is a tightly coupled mutualistic interaction between hydrogen-/formate-producing and hydrogen-/formate-using microorganisms that occurs throughout the microbial world. Syntrophy is essential for global carbon cycling, waste decomposition, and biofuel production. Reverse electron transfer, e.g., the input of energy to drive critical redox reactions, is a defining feature of syntrophy. Genomic analyses indicate multiple systems for reverse electron transfer, including ion-translocating ferredoxin:NAD(+) oxidoreductase and hydrogenases, two types of electron transfer flavoprotein:quinone oxidoreductases, and other quinone reactive complexes. Confurcating hydrogenases that couple the favorable production of hydrogen from reduced ferredoxin with the unfavorable production of hydrogen from NADH are present in almost all syntrophic metabolizers, implicating their critical role in syntrophy. Transcriptomic analysis shows upregulation of many genes without assigned functions in the syntrophic lifestyle. High-throughput technologies provide insight into the mechanisms used to establish and maintain syntrophic consortia and conserve energy from reactions that operate close to thermodynamic equilibrium.


Subject(s)
Microbial Consortia , Microbial Interactions , Anaerobiosis , Biota , Energy Metabolism , Ferredoxins/metabolism , Flavoproteins/metabolism , Formates/metabolism , Genomics , Hydrogen/metabolism , Metabolic Networks and Pathways/genetics , NAD/metabolism , Oxidoreductases/metabolism , Quinones/metabolism
5.
Archaea ; 2016: 4706532, 2016.
Article in English | MEDLINE | ID: mdl-27194953

ABSTRACT

Inorganic storage granules have long been recognized in bacterial and eukaryotic cells but were only recently identified in archaeal cells. Here, we report the cellular organization and chemical compositions of storage granules in the Euryarchaeon, Archaeoglobus fulgidus strain VC16, a hyperthermophilic, anaerobic, and sulfate-reducing microorganism. Dense granules were apparent in A. fulgidus cells imaged by cryo electron microscopy (cryoEM) but not so by negative stain electron microscopy. Cryo electron tomography (cryoET) revealed that each cell contains one to several dense granules located near the cell membrane. Energy dispersive X-ray (EDX) spectroscopy and scanning transmission electron microscopy (STEM) show that, surprisingly, each cell contains not just one but often two types of granules with different elemental compositions. One type, named iron sulfide body (ISB), is composed mainly of the elements iron and sulfur plus copper; and the other one, called polyphosphate body (PPB), is composed of phosphorus and oxygen plus magnesium, calcium, and aluminum. PPBs are likely used for energy storage and/or metal sequestration/detoxification. ISBs could result from the reduction of sulfate to sulfide via anaerobic energy harvesting pathways and may be associated with energy and/or metal storage or detoxification. The exceptional ability of these archaeal cells to sequester different elements may have novel bioengineering applications.


Subject(s)
Archaeoglobus fulgidus/chemistry , Cytoplasmic Granules/chemistry , Iron Compounds/analysis , Polyphosphates/analysis , Sulfides/analysis , Aerobiosis , Anaerobiosis , Archaeoglobus fulgidus/ultrastructure , Cryoelectron Microscopy , Cytoplasmic Granules/ultrastructure , Electron Microscope Tomography , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Spectrometry, X-Ray Emission
6.
Microb Ecol ; 71(1): 243-55, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26597961

ABSTRACT

Despite many examples of obligate epibiotic symbiosis (one organism living on the surface of another) in nature, such an interaction has rarely been observed between two bacteria. Here, we further characterize a newly reported interaction between a human oral obligate parasitic bacterium TM7x (cultivated member of Candidatus Saccharimonas formerly Candidate Phylum TM7), and its basibiont Actinomyces odontolyticus species (XH001), providing a model system to study epiparasitic symbiosis in the domain Bacteria. Detailed microscopic studies indicate that both partners display extensive morphological changes during symbiotic growth. XH001 cells manifested as short rods in monoculture, but displayed elongated and hyphal morphology when physically associated with TM7x. Interestingly, these dramatic morphological changes in XH001 were also induced in oxygen-depleted conditions, even in the absence of TM7x. Targeted quantitative real-time PCR (qRT-PCR) analyses revealed that both the physical association with TM7x as well as oxygen depletion triggered up-regulation of key stress response genes in XH001, and in combination, these conditions act in an additive manner. TM7x and XH001 co-exist with relatively uniform cell morphologies under nutrient-replete conditions. However, upon nutrient depletion, TM7x-associated XH001 displayed a variety of cell morphologies, including swollen cell body, clubbed-ends, and even cell lysis, and a large portion of TM7x cells transformed from ultrasmall cocci into elongated cells. Our study demonstrates a highly dynamic interaction between epibiont TM7x and its basibiont XH001 in response to physical association or environmental cues such as oxygen level and nutritional status, as reflected by their morphological and physiological changes during symbiotic growth.


Subject(s)
Actinomyces/physiology , Bacterial Physiological Phenomena , Mouth/microbiology , Actinomyces/genetics , Actinomyces/growth & development , Actinomyces/isolation & purification , Bacteria/genetics , Bacteria/growth & development , Bacteria/isolation & purification , Humans , Phenotype , Symbiosis
7.
BMC Microbiol ; 15: 174, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26307095

ABSTRACT

BACKGROUND: The Escherichia coli response regulator NarL controls transcription of genes involved in nitrate respiration during anaerobiosis. NarL consists of two domains joined by a linker that wraps around the interdomain interface. Phosphorylation of the NarL N-terminal receiver domain (RD) releases the, otherwise sequestered, C-terminal output domain (OD) that subsequently binds specific DNA promoter sites to repress or activate gene expression. The aim of this study is to investigate the extent to which the NarL OD and RD function independently to regulate transcription, and the affect of the linker on OD function. RESULTS: NarL OD constructs containing different linker segments were examined for their ability to repress frdA-lacZ or activate narG-lacZ reporter fusion genes. These in vivo expression assays revealed that the NarL OD, in the absence or presence of linker helix α6, constitutively repressed frdA-lacZ expression regardless of nitrate availability. However, the presence of the linker loop α5-α6 reversed this repression and also showed impaired DNA binding in vitro. The OD alone could not activate narG-lacZ expression; this activity required the presence of the NarL RD. A footprint assay demonstrated that the NarL OD only partially bound recognition sites at the narG promoter, and the binding affinity was increased by the presence of the phosphorylated RD. Analytical ultracentrifugation used to examine domain oligomerization showed that the NarL RD forms dimers in solution while the OD is monomeric. CONCLUSIONS: The NarL RD operates as an on-off switch to occlude or release the OD in a nitrate-responsive manner, but has additional roles to directly stimulate transcription at promoters for which the OD lacks independent function. One such role of the RD is to enhance the DNA binding affinity of the OD to target promoter sites. The data also imply that NarL phosphorylation results in RD dimerization and in the separation of the entire linker region from the OD.


Subject(s)
DNA-Binding Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Promoter Regions, Genetic , Transcription, Genetic , Anaerobiosis , Artificial Gene Fusion , Escherichia coli/metabolism , Genes, Reporter , Nitrates/metabolism , Oxidation-Reduction , beta-Galactosidase/analysis , beta-Galactosidase/genetics
8.
Nucleic Acids Res ; 41(Database issue): D605-12, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23143106

ABSTRACT

EcoCyc (http://EcoCyc.org) is a model organism database built on the genome sequence of Escherichia coli K-12 MG1655. Expert manual curation of the functions of individual E. coli gene products in EcoCyc has been based on information found in the experimental literature for E. coli K-12-derived strains. Updates to EcoCyc content continue to improve the comprehensive picture of E. coli biology. The utility of EcoCyc is enhanced by new tools available on the EcoCyc web site, and the development of EcoCyc as a teaching tool is increasing the impact of the knowledge collected in EcoCyc.


Subject(s)
Databases, Genetic , Escherichia coli K12/genetics , Binding Sites , Escherichia coli K12/metabolism , Escherichia coli Proteins/classification , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Internet , Membrane Transport Proteins/classification , Membrane Transport Proteins/metabolism , Models, Genetic , Molecular Sequence Annotation , Phenotype , Position-Specific Scoring Matrices , Promoter Regions, Genetic , Systems Biology , Transcription Factors/metabolism , Transcription, Genetic
9.
Proc Natl Acad Sci U S A ; 109(29): 11812-7, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-22753492

ABSTRACT

Archaea have a self-assembling proteinaceous surface (S-) layer as the primary and outermost boundary of their cell envelopes. The S-layer maintains structural rigidity, protects the organism from adverse environmental elements, and yet provides access to all essential nutrients. We have determined the crystal structure of one of the two "homologous" tandem polypeptide repeats that comprise the Methanosarcina acetivorans S-layer protein and propose a high-resolution model for a microbial S-layer. The molecular features of our hexameric S-layer model recapitulate those visualized by medium resolution electron microscopy studies of microbial S-layers and greatly expand our molecular view of S-layer dimensions, porosity, and symmetry. The S-layer model reveals a negatively charged molecular sieve that presents both a charge and size barrier to restrict access to the cell periplasmic-like space. The ß-sandwich folds of the S-layer protein are structurally homologous to eukaryotic virus envelope proteins, suggesting that Archaea and viruses have arrived at a common solution for protective envelope structures. These results provide insight into the evolutionary origins of primitive cell envelope structures, of which the S-layer is considered to be among the most primitive: it also provides a platform for the development of self-assembling nanomaterials with diverse functional and structural properties.


Subject(s)
Membrane Glycoproteins/metabolism , Methanosarcina/metabolism , Models, Molecular , Peptides/chemistry , Protein Conformation , Crystallography, X-Ray , Evolution, Molecular , Membrane Glycoproteins/ultrastructure , Microscopy, Electron
10.
bioRxiv ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39026688

ABSTRACT

Many protein-protein interactions behave differently in biochemically purified forms as compared to their in vivo states. As such, determining native protein structures may elucidate structural states previously unknown for even well-characterized proteins. Here we apply the bottom-up structural proteomics method, cryoID , toward a model methanogenic archaeon. While they are keystone organisms in the global carbon cycle and active members of the human microbiome, there is a general lack of characterization of methanogen enzyme structure and function. Through the cryoID approach, we successfully reconstructed and identified the native Methanosarcina acetivorans pyridoxal 5'-phosphate (PLP) synthase (PdxS) complex directly from cryogenic electron microscopy (cryoEM) images of fractionated cellular lysate. We found that the native PdxS complex exists as a homo-dodecamer of PdxS subunits, and the previously proposed supracomplex containing both the synthase (PdxS) and glutaminase (PdxT) was not observed in cellular lysate. Our structure shows that the native PdxS monomer fashions a single 8α/8ß TIM-barrel domain, surrounded by seven additional helices to mediate solvent and interface contacts. A density is present at the active site in the cryoEM map and is interpreted as ribose 5-phosphate. In addition to being the first reconstruction of the PdxS enzyme from a heterogeneous cellular sample, our results reveal a departure from previously published archaeal PdxS crystal structures, lacking the 37 amino acid insertion present in these prior cases. This study demonstrates the potential of applying the cryoID workflow to capture native structural states at atomic resolution for archaeal systems, for which traditional biochemical sample preparation is nontrivial.

11.
Microbiol Resour Announc ; : e0033624, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967468

ABSTRACT

Variovorax species catabolize a wide range of natural and industrial products and have been shown to be integral rhizosphere inhabitants. Here, we report the complete genomes of V. paradoxus 2u118 and V. sp. SPNA7, which were isolated from alfalfa root nodules and possess plant growth-promoting properties.

12.
Nucleic Acids Res ; 39(Database issue): D583-90, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21097882

ABSTRACT

EcoCyc (http://EcoCyc.org) is a comprehensive model organism database for Escherichia coli K-12 MG1655. From the scientific literature, EcoCyc captures the functions of individual E. coli gene products; their regulation at the transcriptional, post-transcriptional and protein level; and their organization into operons, complexes and pathways. EcoCyc users can search and browse the information in multiple ways. Recent improvements to the EcoCyc Web interface include combined gene/protein pages and a Regulation Summary Diagram displaying a graphical overview of all known regulatory inputs to gene expression and protein activity. The graphical representation of signal transduction pathways has been updated, and the cellular and regulatory overviews were enhanced with new functionality. A specialized undergraduate teaching resource using EcoCyc is being developed.


Subject(s)
Databases, Genetic , Escherichia coli K12/physiology , Binding Sites , Escherichia coli K12/genetics , Escherichia coli K12/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Signal Transduction , Software , Transcription Factors/metabolism , Transcription, Genetic , User-Computer Interface
13.
Archaea ; 2012: 873589, 2012.
Article in English | MEDLINE | ID: mdl-22666082

ABSTRACT

Many archaeal cell envelopes contain a protein coat or sheath composed of one or more surface exposed proteins. These surface layer (S-layer) proteins contribute structural integrity and protect the lipid membrane from environmental challenges. To explore the species diversity of these layers in the Methanosarcinaceae, the major S-layer protein in Methanosarcina barkeri strain Fusaro was identified using proteomics. The Mbar_A1758 gene product was present in multiple forms with apparent sizes of 130, 120, and 100 kDa, consistent with post-translational modifications including signal peptide excision and protein glycosylation. A protein with features related to the surface layer proteins found in Methanosarcina acetivorans C2A and Methanosarcina mazei Goel was identified in the M. barkeri genome. These data reveal a distinct conserved protein signature with features and implied cell surface architecture in the Methanosarcinaceae that is absent in other archaea. Paralogous gene expression patterns in two Methanosarcina species revealed abundant expression of a single S-layer paralog in each strain. Respective promoter elements were identified and shown to be conserved in mRNA coding and upstream untranslated regions. Prior M. acetivorans genome annotations assigned S-layer or surface layer associated roles of eighty genes: however, of 68 examined none was significantly expressed relative to the experimentally determined S-layer gene.


Subject(s)
Membrane Glycoproteins/analysis , Methanosarcina/chemistry , DNA, Archaeal/genetics , Gene Expression , Genes, Archaeal , Genome, Archaeal , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Methanosarcina/genetics , Molecular Weight , Promoter Regions, Genetic , Protein Processing, Post-Translational , Proteomics/methods
14.
Front Microbiol ; 13: 1018220, 2022.
Article in English | MEDLINE | ID: mdl-36419437

ABSTRACT

Syntrophomonas wolfei is an anaerobic syntrophic microbe that degrades short-chain fatty acids to acetate, hydrogen, and/or formate. This thermodynamically unfavorable process proceeds through a series of reactive acyl-Coenzyme A species (RACS). In other prokaryotic and eukaryotic systems, the production of intrinsically reactive metabolites correlates with acyl-lysine modifications, which have been shown to play a significant role in metabolic processes. Analogous studies with syntrophic bacteria, however, are relatively unexplored and we hypothesized that highly abundant acylations could exist in S. wolfei proteins, corresponding to the RACS derived from degrading fatty acids. Here, by mass spectrometry-based proteomics (LC-MS/MS), we characterize and compare acylome profiles of two S. wolfei subspecies grown on different carbon substrates. Because modified S. wolfei proteins are sufficiently abundant to analyze post-translational modifications (PTMs) without antibody enrichment, we could identify types of acylations comprehensively, observing six types (acetyl-, butyryl-, 3-hydroxybutyryl-, crotonyl-, valeryl-, and hexanyl-lysine), two of which have not been reported in any system previously. All of the acyl-PTMs identified correspond directly to RACS in fatty acid degradation pathways. A total of 369 sites of modification were identified on 237 proteins. Structural studies and in vitro acylation assays of a heavily modified enzyme, acetyl-CoA transferase, provided insight on the potential impact of these acyl-protein modifications. The extensive changes in acylation-type, abundance, and modification sites with carbon substrate suggest that protein acylation by RACS may be an important regulator of syntrophy.

15.
Environ Microbiol ; 13(9): 2587-99, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21854518

ABSTRACT

Storage granules are an important component of metabolism in many organisms spanning the bacterial, eukaryal and archaeal domains, but systematic analysis of their organization inside cells is lacking. In this study, we identify and characterize granule-like inclusion bodies in a methanogenic archaeon, Methanospirillum hungatei, an anaerobic microorganism that plays an important role in nutrient recycling in the ecosystem. Using cryo electron microscopy, we show that granules in mature M. hungatei are amorphous in structure with a uniform size. Energy dispersive X-ray spectroscopy analysis establishes that each granule is a polyphosphate body (PPB) that consists of high concentrations of phosphorous and oxygen, and increased levels of iron and magnesium. By scanning transmission electron tomography, we further estimate that the mass density within a PPB is a little less than metal titanium at room temperature and is about four times higher than that of the surrounding cytoplasm. Finally, three-dimensional cryo electron tomography reveals that PPBs are positioned off-centre in their radial locations relative to the cylindrical axis of the cell, and almost uniformly placed near cell ends. This positioning ability points to a genetic program that spatially and temporally directs the accumulation of polyphosphate into a storage granule, perhaps for energy-consuming activities, such as cell maintenance, division or motility.


Subject(s)
Inclusion Bodies/ultrastructure , Methanospirillum/cytology , Cryoelectron Microscopy , Cytoplasm/ultrastructure , Electron Microscope Tomography , Inclusion Bodies/chemistry , Methane/metabolism , Polyphosphates/analysis , Spectrometry, X-Ray Emission
16.
Nucleic Acids Res ; 37(Database issue): D464-70, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18974181

ABSTRACT

EcoCyc (http://EcoCyc.org) provides a comprehensive encyclopedia of Escherichia coli biology. EcoCyc integrates information about the genome, genes and gene products; the metabolic network; and the regulatory network of E. coli. Recent EcoCyc developments include a new initiative to represent and curate all types of E. coli regulatory processes such as attenuation and regulation by small RNAs. EcoCyc has started to curate Gene Ontology (GO) terms for E. coli and has made a dataset of E. coli GO terms available through the GO Web site. The curation and visualization of electron transfer processes has been significantly improved. Other software and Web site enhancements include the addition of tracks to the EcoCyc genome browser, in particular a type of track designed for the display of ChIP-chip datasets, and the development of a comparative genome browser. A new Genome Omics Viewer enables users to paint omics datasets onto the full E. coli genome for analysis. A new advanced query page guides users in interactively constructing complex database queries against EcoCyc. A Macintosh version of EcoCyc is now available. A series of Webinars is available to instruct users in the use of EcoCyc.


Subject(s)
Databases, Genetic , Escherichia coli/genetics , Escherichia coli/metabolism , Cell Membrane/enzymology , Electron Transport , Escherichia coli/enzymology , Gene Expression Regulation, Bacterial , Genes, Bacterial , Genome, Bacterial , Genomics , Internet , Software , Transcription, Genetic
17.
BMC Microbiol ; 10: 62, 2010 Feb 23.
Article in English | MEDLINE | ID: mdl-20178638

ABSTRACT

BACKGROUND: The archaeon, Methanosarcina acetivorans strain C2A forms methane, a potent greenhouse gas, from a variety of one-carbon substrates and acetate. Whereas the biochemical pathways leading to methane formation are well understood, little is known about the expression of the many of the genes that encode proteins needed for carbon flow, electron transfer and/or energy conservation. Quantitative transcript analysis was performed on twenty gene clusters encompassing over one hundred genes in M. acetivorans that encode enzymes/proteins with known or potential roles in substrate conversion to methane. RESULTS: The expression of many seemingly "redundant" genes/gene clusters establish substrate dependent control of approximately seventy genes for methane production by the pathways for methanol and acetate utilization. These include genes for soluble-type and membrane-type heterodisulfide reductases (hdr), hydrogenases including genes for a vht-type F420 non-reducing hydrogenase, molybdenum-type (fmd) as well as tungsten-type (fwd) formylmethanofuran dehydrogenases, genes for rnf and mrp-type electron transfer complexes, for acetate uptake, plus multiple genes for aha- and atp-type ATP synthesis complexes. Analysis of promoters for seven gene clusters reveal UTR leaders of 51-137 nucleotides in length, raising the possibility of both transcriptional and translational levels of control. CONCLUSIONS: The above findings establish the differential and coordinated expression of two major gene families in M. acetivorans in response to carbon/energy supply. Furthermore, the quantitative mRNA measurements demonstrate the dynamic range for modulating transcript abundance. Since many of these gene clusters in M. acetivorans are also present in other Methanosarcina species including M. mazei, and in M. barkeri, these findings provide a basis for predicting related control in these environmentally significant methanogens.


Subject(s)
Carbon/metabolism , Methane/biosynthesis , Methanosarcina/genetics , Methanosarcina/metabolism , Acetates/metabolism , Acetates/pharmacology , Aldehyde Oxidoreductases/classification , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Bacterial Proton-Translocating ATPases/genetics , Bacterial Proton-Translocating ATPases/metabolism , Base Sequence , Electron Transport/genetics , Gene Expression Regulation, Bacterial/drug effects , Genome, Archaeal , Metabolic Networks and Pathways , Models, Genetic , Molecular Sequence Data , Multigene Family , Oxidoreductases/genetics , Oxidoreductases/metabolism , Phylogeny , Promoter Regions, Genetic , Sequence Alignment
18.
Article in English | MEDLINE | ID: mdl-20208152

ABSTRACT

The trace-element oxyanion molybdate, which is required for the growth of many bacterial and archaeal species, is transported into the cell by an ATP-binding cassette (ABC) transporter superfamily uptake system called ModABC. ModABC consists of the ModA periplasmic solute-binding protein, the integral membrane-transport protein ModB and the ATP-binding and hydrolysis cassette protein ModC. In this study, X-ray crystal structures of ModA from the archaeon Methanosarcina acetivorans (MaModA) have been determined in the apoprotein conformation at 1.95 and 1.69 A resolution and in the molybdate-bound conformation at 2.25 and 2.45 A resolution. The overall domain structure of MaModA is similar to other ModA proteins in that it has a bilobal structure in which two mixed alpha/beta domains are linked by a hinge region. The apo MaModA is the first unliganded archaeal ModA structure to be determined: it exhibits a deep cleft between the two domains and confirms that upon binding ligand one domain is rotated towards the other by a hinge-bending motion, which is consistent with the 'Venus flytrap' model seen for bacterial-type periplasmic binding proteins. In contrast to the bacterial ModA structures, which have tetrahedral coordination of their metal substrates, molybdate-bound MaModA employs octahedral coordination of its substrate like other archaeal ModA proteins.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , Apoproteins/chemistry , Archaeal Proteins/chemistry , Methanosarcina/chemistry , ATP-Binding Cassette Transporters/metabolism , Amino Acid Sequence , Apoproteins/metabolism , Archaeal Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Ligands , Methanosarcina/metabolism , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Alignment , Substrate Specificity
19.
Metab Eng ; 11(3): 184-91, 2009 May.
Article in English | MEDLINE | ID: mdl-19558961

ABSTRACT

The membrane lipids of archaea are characterized by unique isoprenoid biochemistry, which typically is based on two core lipid structures, sn-2,3-diphytanylglycerol diether (archaeol) and sn-2,3-dibiphytanyldiglycerol tetraether (caldarchaeol). The biosynthetic pathway for the tetraether lipid entails unprecedented head-to-head coupling of isoprenoid intermediates by an unknown mechanism involving unidentified enzymes. To investigate the isoprenoid ether lipid biosynthesis pathway of the hyperthermophilic archaeon, Archaeoglobus fulgidus, its lipid synthesis machinery was reconstructed in an engineered Escherichia coli strain in an effort to demonstrate, for the first time, efficient isoprenoid ether lipid biosynthesis for the production of the intermediate, digeranylgeranylglyceryl phosphate (DGGGP). The biosynthesis of DGGGP was verified using an LC/MS/MS technique and was accomplished by cloning and expressing the native E. coli gene for isopentenyl diphosphate (IPP) isomerase (idi), along with the A. fulgidus genes for G1P dehydrogenase (egsA) and GGPP synthase (gps), under the control of the lac promoter. The A. fulgidus genes for GGGP synthase (GGGPS) and DGGGP synthase (DGGGPS), under the control of the araBAD promoter, were then introduced and expressed to enable DGGGP biosynthesis in vivo. This investigation established roles for four A. fulgidus genes in the isoprenoid ether lipid pathway for DGGGP biosynthesis and provides a platform useful for identification of subsequent, currently unknown, steps in tetraether lipid biosynthesis proceeding from DGGGP, which is the presumed substrate for the head-to-head coupling reaction yielding unsaturated caldarchaeol.


Subject(s)
Archaeoglobus fulgidus/metabolism , Escherichia coli/metabolism , Hemiterpenes/metabolism , Lipid Metabolism/physiology , Organophosphorus Compounds/metabolism , Polyisoprenyl Phosphates/metabolism , Terpenes/metabolism , Archaeoglobus fulgidus/genetics , Escherichia coli/genetics , Glycerophosphates , Glyceryl Ethers/metabolism
20.
Ann N Y Acad Sci ; 1125: 58-72, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18378587

ABSTRACT

Syntrophic metabolism is diverse in two respects: phylogenetically with microorganisms capable of syntrophic metabolism found in the Deltaproteobacteria and in the low G+C gram-positive bacteria, and metabolically given the wide variety of compounds that can be syntrophically metabolized. The latter includes saturated fatty acids, unsaturated fatty acids, alcohols, and hydrocarbons. Besides residing in freshwater and marine anoxic sediments and soils, microbes capable of syntrophic metabolism also have been observed in more extreme habitats, including acidic soils, alkaline soils, thermal springs, and permanently cold soils, demonstrating that syntrophy is a widely distributed metabolic process in nature. Recent ecological and physiological studies show that syntrophy plays a far larger role in carbon cycling than was previously thought. The availability of the first complete genome sequences for four model microorganisms capable of syntrophic metabolism provides the genetic framework to begin dissecting the biochemistry of the marginal energy economies and interspecies interactions that are characteristic of the syntrophic lifestyle.


Subject(s)
Deltaproteobacteria/classification , Deltaproteobacteria/genetics , Gram-Positive Bacteria/classification , Gram-Positive Bacteria/genetics , Deltaproteobacteria/metabolism , Fatty Acids/metabolism , Genomics , Gram-Positive Bacteria/metabolism , Phylogeny , Propionates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL