Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
ACS Omega ; 7(18): 15769-15778, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35571788

ABSTRACT

Semaphorin 6D (SEMA6D), a member of the class 6 semaphorin family, is a membrane-associated protein that plays a key role in the development of cardiac and neural tissues. A growing body of evidence suggests that SEMA6D is also involved in tumorigenesis. In breast cancer, high SEMA6D levels are correlated with better survival rates. However, very little is known about the functional significance of SEMA6D in breast tumorigenesis. In the present study, we aimed to investigate the effects of SEMA6D expression on the normal breast cell line MCF10A and the breast cancer cell lines MCF7 and MDA MB 231. We demonstrated that SEMA6D expression increases the proliferation of MCF10A cells, whereas the opposite effect was observed in MCF7 cells. SEMA6D expression induced anchorage-independent growth in both cancer cell lines. Furthermore, migration of MCF10A and MCF7 cells and invasion of MDA MB 231 cells were elevated in response to SEMA6D overexpression. Accordingly, the genes related to epithelial-mesenchymal transition (EMT) were altered by SEMA6D expression in MCF10A and MCF7 cell lines. Finally, we provided evidence that SEMA6D levels were associated with the expression of the cell cycle, EMT, and Notch signaling pathway-related genes in breast cancer patients' data. We showed for the first time that SEMA6D overexpression has cell-specific effects on the proliferation, migration, and invasion of normal and cancer breast cell lines, which agrees with the gene expression data of clinical samples. This study lays the groundwork for future research into understanding the functional importance of SEMA6D in breast cancer.

2.
Eur J Cell Biol ; 99(2-3): 151070, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32005345

ABSTRACT

Metastasis is the main cause of cancer related deaths, and unfolding the molecular mechanisms underlying metastatic progression is critical for the development of novel therapeutic approaches. Notch is one of the key signaling pathways involved in breast tumorigenesis and metastasis. Notch activation induces pro-metastatic processes such as migration, invasion and epithelial to mesenchymal transition (EMT). However, molecular mediators working downstream of Notch in these processes are not fully elucidated. CYR61 is a secreted protein implicated in metastasis, and its inhibition by a monoclonal antibody suppresses metastasis in xenograft breast tumors, indicating the clinical importance of CYR61 targeting. Here, we aimed to investigate whether CYR61 works downstream of Notch in inducing pro-metastatic phenotypes in breast cells. We showed that CYR61 expression is positively regulated by Notch activity in breast cells. Notch1-induced migration, invasion and anchorage independent growth of a normal breast cell line, MCF10A, were abrogated by CYR61 silencing. Furthermore, upregulation of core EMT markers upon Notch1-activation was impaired in the absence of CYR61. However, reduced migration and invasion of highly metastatic cell line, MDA MB 231, cells upon Notch inhibition was not dependent on CYR61 downregulation. In conclusion, we showed that in normal breast cell line MCF10A, CYR61 is a mediator of Notch1-induced pro-metastatic phenotypes partly via induction of EMT. Our results imply CYR61 as a prominent therapeutic candidate for a subpopulation of breast tumors with high Notch activity.


Subject(s)
Breast Neoplasms/genetics , Cysteine-Rich Protein 61/genetics , Receptor, Notch1/genetics , Breast Neoplasms/pathology , Female , Humans , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL