Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Environ Res ; 251(Pt 2): 118679, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38518904

ABSTRACT

Metal-organic frameworks (MOFs) are promising adsorbents for legacy per-/polyfluoroalkyl substances (PFASs), but they are being replaced by emerging PFASs. The effects of varying carbon chains and functional groups of emerging PFASs on their adsorption behavior on MOFs require attention. This study systematically revealed the structure-adsorption relationships and interaction mechanisms of legacy and emerging PFASs on a typical MOF MIL-101(Cr). It also presented an approach reflecting the average electronegativity of PFAS moieties for adsorption prediction. We demonstrated that short-chain or sulfonate PFASs showed higher adsorption capacities (µmol/g) on MIL-101(Cr) than their long-chain or carboxylate counterparts, respectively. Compared with linear PFASs, their branched isomers were found to exhibit a higher adsorption potential on MIL-101(Cr). In addition, the introduction of ether bond into PFAS molecule (e.g., hexafluoropropylene oxide dimeric acid, GenX) increased the adsorption capacity, while the replacement of CF2 moieties in PFAS molecule with CH2 moieties (e.g., 6:2 fluorotelomer sulfonate, 6:2 FTS) caused a decrease in adsorption. Divalent ions (such as Ca2+ and SO42-) and solution pH have a greater effect on the adsorption of PFASs containing ether bonds or more CF2 moieties. PFAS adsorption on MIL-101(Cr) was governed by electrostatic interaction, complexation, hydrogen bonding, π-CF interaction, and π-anion interaction as well as steric effects, which were associated with the molecular electronegativity and chain length of each PFAS. The average electronegativity of individual moieties (named Me) for each PFAS was estimated and found to show a significantly positive correlation with the corresponding adsorption capacity on MIL-101(Cr). The removal rates of major PFASs in contaminated groundwater by MIL-101(Cr) were also correlated with the corresponding Me values. These findings will assist with the adsorption prediction for a wide range of PFASs and contribute to tailoring efficient MOF materials.


Subject(s)
Fluorocarbons , Metal-Organic Frameworks , Adsorption , Fluorocarbons/chemistry , Metal-Organic Frameworks/chemistry , Carbon/chemistry , Water Pollutants, Chemical/chemistry
2.
Environ Sci Technol ; 57(38): 14384-14395, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37694860

ABSTRACT

Ferrihydrite is one of the most reactive iron (Fe) (oxyhydr)oxides in soils, but the adsorption mechanisms of glyphosate, the most widely used herbicide, on ferrihydrite remain unknown. Here, we determined the adsorption mechanisms of glyphosate on pristine and Al-substituted ferrihydrites with aggregated and dispersed states using macroscopic adsorption experiments, zeta potential, phosphorus K-edge X-ray absorption near-edge structure spectroscopy, in situ attenuated total reflectance Fourier transform infrared spectroscopy coupled with two-dimensional correlation spectroscopy, and multivariate curve resolution analyses. Aggregation of ferrihydrite decreases the glyphosate adsorption capacity. The partial substitution of Al in ferrihydrite inhibits glyphosate adsorption on aggregated ferrihydrite due to the decrease of external specific surface area, while it promotes glyphosate adsorption on dispersed ferrihydrite, which is ascribed to the increase of surface positive charge. Glyphosate predominately forms protonated and deprotonated, depending on the sorption pH, monodentate-mononuclear complexes (MMH1/MMH0, 77-90%) on ferrihydrites, besides minor deprotonated bidentate-binuclear complexes (BBH0, 23-10%). Both Al incorporation and a low pH favor the formation of the BB complex. The adsorbed glyphosate preferentially forms the MM complex on ferrihydrite and preferentially bonds with the Al-OH sites on Al-substituted ferrihydrite. These new insights are expected to be useful in predicting the environmental fate of glyphosate in ferrihydrite-rich environments.


Subject(s)
Herbicides , Iron , Adsorption , Glyphosate
3.
Chemosphere ; 263: 127979, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32841877

ABSTRACT

Glyphosate (PMG) has been the most widely used herbicide in the world, and its environmental mobility and fate are mainly controlled by interactions with mineral surfaces. In soil systems, kaolinite is typically associated with humic acids (HAs) in the form of mineral-HA complexes, and hence it is crucial to characterize the molecular-scale interactions that occur between PMG and kaolinite and kaolinite-HA complexes. Batch experiments, Fourier transform infrared spectrum (FTIR) and X-ray photoelectron spectroscopy (XPS), isothermal titration calorimetry (ITC), and molecular dynamics (MD) simulations were performed to decipher the molecular interactions between PMG and kaolinite and kaolinite-HA composites. Our results reveal that kaolinite-HA composites adsorb higher concentrations of PMG than does kaolinite alone, likely due to more adsorption sites existed on kaolinite-HA than on kaolinite. FTIR and XPS analysis reveal that the carboxyl, phosphonyl and amino groups of PMG interacted with kaolinite and kaolinite-humic acid via Hydrogen bonds. The ITC results and interaction energy calculations indicate that the adsorption of PMG onto the kaolinite-HA is more energetically favorable relative to that onto kaolinite. MD simulations suggest that the PMG molecule adsorbs parallel to the surface of kaolinite and the composites through hydrogen bonding. Humic acid increases the adsorption of PMG through the creation of H-bond networks between PMG, the kaolinite surface, and humic acid. The results from this study improve our molecular-level understanding of the interactions between PMG and two important components of soil systems, and hence yield valuable information for characterizing the fate and behavior of PMG in soil environments.


Subject(s)
Glycine/analogs & derivatives , Herbicides/chemistry , Humic Substances , Kaolin/chemistry , Adsorption , Calorimetry , Glycine/chemistry , Hydrogen-Ion Concentration , Minerals/chemistry , Molecular Dynamics Simulation , Photoelectron Spectroscopy , Soil , Spectroscopy, Fourier Transform Infrared , Glyphosate
4.
RSC Adv ; 10(65): 39731-39738, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-35515372

ABSTRACT

Heusler materials have aroused great scientific research interest during recent years due to their special electronic and magnetic properties. Especially for the equiatomic quaternary Heusler compounds, they exhibit very high composition flexibility and structure tunability. In this work, we have carried out a systematic study on the structural configuration and tetragonal stability for the Heusler compound TiZnMnSi by first-principles calculations. Results reveal the type-A structure with ferromagnetic state possesses the lowest total energy and thus should be the ground state configuration. Based on the equilibrium lattice constant, the electronic band structures and magnetic moments have been computed. The tetragonal phase transformation is then investigated by using the total energy variation under different tetragonal strains, and the stability analysis of the mechanical and dynamic properties indicates that TiZnMnSi exhibits a strong tendency for the tetragonal phase. These findings could provide reference data for relative experiments as well as a very helpful theoretical reference for this fascinating class of materials.

SELECTION OF CITATIONS
SEARCH DETAIL