Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
BMC Genomics ; 25(1): 680, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978040

ABSTRACT

BACKGROUND: The breeder rooster has played a pivotal role in poultry production by providing high-quality semen. Typically, fertility peaks between 30 and 40 weeks of age and then declines rapidly from 45 to 55 weeks of age. Research into improving fertility in aging roosters is essential to extend their productive life. While progress has been made, enhancing fertility in aging roosters remains a significant challenge. METHODS: To identify the genes related to promoting sperm remodeling in aged Houdan roosters, we combined changes in testis and semen quality with transcriptome sequencing (RNA-seq) to analyze the synchrony of semen quality and testis development. In this study, 350-day-old Houdan breeder roosters were selected for RNA-seq analysis in testis tissues from induced molting roosters (D group) and non-induced molting roosters (47DG group). All analyses of differentially expressed genes (DEGs) and functional enrichment were performed. Finally, we selected six DEGs to verify the accuracy of the sequencing by qPCR. RESULTS: Compared with the 47DG group, sperm motility (P < 0.05), sperm density (P < 0.01), and testis weight (P < 0.05) were significantly increased in roosters in the D group. Further RNA-seq analysis of the testis between the D group and 47DG group identified 61 DEGs, with 21 up-regulated and 40 down-regulated. Functional enrichment analysis showed that the DEGs were primarily enriched in the cytokine-cytokine receptor interaction, Wnt signaling pathway, MAPK signaling pathway, TGF-ß signaling pathway, and focal adhesion pathway. The qRT-PCR results showed that the expression trend of these genes was consistent with the sequencing results. WNT5A, FGFR3, AGTR2, TGFß2, ROMO1, and SLC26A7 may play a role in testis development and spermatogenesis. This study provides fundamental data to enhance the reproductive value of aging roosters.


Subject(s)
Chickens , Gene Expression Profiling , Spermatozoa , Testis , Male , Animals , Spermatozoa/metabolism , Chickens/genetics , Testis/metabolism , Transcriptome , Aging/genetics , Semen Analysis , Sperm Motility/genetics , Caloric Restriction
2.
Poult Sci ; 103(12): 104325, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39316988

ABSTRACT

The high-yielding Houdan chicken (GGF) is characterized by high egg production and disease resistance. This study conducted whole genome resequencing of the GGF population and compared it to data from other breeds. Genetic diversity analysis revealed higher observed heterozygosity (Ho), Polymorphism information content (PIC), number of runs of homozygosity (ROH), and inbreeding coefficient (FROH) in GGF. Linkage disequilibrium (LD) decay was slowest in GGF, indicating intensive inbreeding and strong selection. These findings suggest a need for appropriate strategies to enhance genetic diversity conservation in this breed. Population structure analysis demonstrated that GGF was genetically distinct from both the red jungle fowl (RJF) and Chinese indigenous chicken (CIC) populations, highlighting GGF as a unique genetic resource warranting intensive protection and utilization. Selective sweep analysis identified genes under selection in GGF, primarily enriched in signaling pathways related to oocyte meiosis and progesterone-mediated oocyte maturation. Key candidate genes included: CCNE1, SKP1, CDC20, CDK2, ADCY8, RPS6KA6, PPP3CB, PDE3B, HSP90AB1, and AKT3. These findings provide a theoretical foundation for their potential application in poultry breeding. Additionally, this study combined bioinformatics analysis with PCR amplification and Sanger sequencing to identify 4 SNPs that can serve as a molecular identity card (ID) for GGF: SNP1 (Chr2: 136130976), SNP3 (Chr4:11705164), SNP4 (Chr4: 63255588), and SNP5 (Chr24: 3271008). This study provides a scientific basis for effective management and conservation of GGF genetic resources, and establishes a simple, economical, and accurate set of molecular IDs to combat the proliferation of inferior breeds and protect genetic resources.

SELECTION OF CITATIONS
SEARCH DETAIL