Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Cell ; 186(17): 3577-3592.e18, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37499659

ABSTRACT

Hybrid sterility restricts the utilization of superior heterosis of indica-japonica inter-subspecific hybrids. In this study, we report the identification of RHS12, a major locus controlling male gamete sterility in indica-japonica hybrid rice. We show that RHS12 consists of two genes (iORF3/DUYAO and iORF4/JIEYAO) that confer preferential transmission of the RHS12-i type male gamete into the progeny, thereby forming a natural gene drive. DUYAO encodes a mitochondrion-targeted protein that interacts with OsCOX11 to trigger cytotoxicity and cell death, whereas JIEYAO encodes a protein that reroutes DUYAO to the autophagosome for degradation via direct physical interaction, thereby detoxifying DUYAO. Evolutionary trajectory analysis reveals that this system likely formed de novo in the AA genome Oryza clade and contributed to reproductive isolation (RI) between different lineages of rice. Our combined results provide mechanistic insights into the genetic basis of RI as well as insights for strategic designs of hybrid rice breeding.


Subject(s)
Gene Drive Technology , Oryza , Hybridization, Genetic , Oryza/genetics , Plant Breeding/methods , Reproductive Isolation , Plant Infertility
2.
Proc Natl Acad Sci U S A ; 119(12): e2114583119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35290117

ABSTRACT

Communication between interacting organisms via bioactive molecules is widespread in nature and plays key roles in diverse biological processes. Small RNAs (sRNAs) can travel between host plants and filamentous pathogens to trigger transkingdom RNA interference (RNAi) in recipient cells and modulate plant defense and pathogen virulence. However, how fungal pathogens counteract transkingdom antifungal RNAi has rarely been reported. Here we show that a secretory protein VdSSR1 (secretory silencing repressor 1) from Verticillium dahliae, a soil-borne phytopathogenic fungus that causes wilt diseases in a wide range of plant hosts, is required for fungal virulence in plants. VdSSR1 can translocate to plant nucleus and serve as a general suppressor of sRNA nucleocytoplasmic shuttling. We further reveal that VdSSR1 sequesters ALY family proteins, adaptors of the TREX complex, to interfere with nuclear export of the AGO1­microRNA (AGO1­miRNA) complex, leading to a great attenuation in cytoplasmic AGO1 protein and sRNA levels. With this mechanism, V. dahliae can suppress the accumulation of mobile plant miRNAs in fungal cells and succedent transkingdom silencing of virulence genes, thereby increasing its virulence in plants. Our findings reveal a mechanism by which phytopathogenic fungi antagonize antifungal RNAi-dependent plant immunity and expand the understanding on the complex interaction between host and filamentous pathogens.


Subject(s)
MicroRNAs , Verticillium , Active Transport, Cell Nucleus , Antifungal Agents , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Diseases/microbiology , Plants/genetics , RNA, Plant , Verticillium/metabolism
3.
Yi Chuan ; 46(4): 266-278, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38632090

ABSTRACT

RNA silencing (or RNA interference, RNAi) is a conserved mechanism for regulating gene expression in eukaryotes, which plays vital roles in plant development and response to biotic and abiotic stresses. The discovery of trans-kingdom RNAi and interspecies RNAi provides a theoretical basis for exploiting RNAi-based crop protection strategies. Here, we summarize the canonical RNAi mechanisms in plants and review representative studies associated with plant-pathogen interactions. Meanwhile, we also elaborate upon the principles of host-induced gene silencing, spray-induced gene silencing and microbe-induced gene silencing, and discuss their applications in crop protection, thereby providing help to establish novel RNAi-based crop protection strategies.


Subject(s)
Crop Protection , Plants , RNA Interference , Plants/genetics , Eukaryota/genetics , RNA, Small Interfering/genetics
4.
Plant Cell ; 32(10): 3256-3272, 2020 10.
Article in English | MEDLINE | ID: mdl-32769133

ABSTRACT

Flowering plants and mammals contain imprinted genes that are primarily expressed in the endosperm and placenta in a parent-of-origin manner. In this study, we show that early activation of the geminivirus genes C2 and C3 in Arabidopsis (Arabidopsis thaliana) plants, encoding a viral suppressor of RNA interference and a replication enhancer protein, respectively, is correlated with the transient vegetative expression of VARIANT IN METHYLATION5 (VIM5), an endosperm imprinted gene that is conserved in diverse plant species. VIM5 is a ubiquitin E3 ligase that directly targets the DNA methyltransferases MET1 and CMT3 for degradation by the ubiquitin-26S proteasome proteolytic pathway. Infection with Beet severe curly top virus induced VIM5 expression in rosette leaf tissues, possibly via the expression of the viral replication initiator protein, leading to the early activation of C2 and C3 coupled with reduced symmetric methylation in the C2-3 promoter and the onset of disease symptoms. These findings demonstrate how this small DNA virus recruits a host imprinted gene for the epigenetic activation of viral gene transcription. Our findings reveal a distinct strategy used by plant pathogens to exploit the host machinery in order to inhibit methylation-mediated defense responses when establishing infection.


Subject(s)
Arabidopsis/genetics , Arabidopsis/virology , Geminiviridae/pathogenicity , Plant Diseases/virology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , DNA-Cytosine Methylases/genetics , DNA-Cytosine Methylases/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Plant , Genomic Imprinting , Host-Pathogen Interactions/genetics , Plant Diseases/genetics , Plant Leaves/genetics , Plant Leaves/virology , Plants, Genetically Modified , Promoter Regions, Genetic , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Viral Proteins/genetics
5.
PLoS Pathog ; 16(4): e1008481, 2020 04.
Article in English | MEDLINE | ID: mdl-32298394

ABSTRACT

Reactive oxygen species (ROS) production is one of the earliest responses when plants percept pathogens and acts as antimicrobials to block pathogen entry. However, whether and how pathogens tolerate ROS stress remains elusive. Here, we report the chromatin remodeling in Verticillium dahliae, a soil-borne pathogenic fungus that causes vascular wilts of a wide range of plants, facilitates the DNA damage repair in response to plant ROS stress. We identified VdDpb4, encoding a histone-fold protein of the ISW2 chromatin remodeling complex in V. dahliae, is a virulence gene. The reduced virulence in wild type Arabidopsis plants arising from VdDpb4 deletion was impaired in the rbohd mutant plants that did not produce ROS. Further characterization of VdDpb4 and its interacting protein, VdIsw2, an ATP-dependent chromatin-remodeling factor, we show that while the depletion of VdIsw2 led to the decondensing of chromatin, the depletion of VdDpb4 resulted in a more compact chromatin structure and affected the VdIsw2-dependent transcriptional effect on gene expression, including genes involved in DNA damage repair. A knockout mutant of either VdDpb4 or VdIsw2 reduced the efficiency of DNA repair in the presence of DNA-damaging agents and virulence during plant infection. Together, our data demonstrate that VdDpb4 and VdIsw2 play roles in maintaining chromatin structure for positioning nucleosomes and transcription regulation, including genes involved in DNA repair in response to ROS stress during development and plant infection.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Verticillium/genetics , Arabidopsis/genetics , DNA Damage/genetics , DNA Damage/physiology , DNA Repair/genetics , Fungal Proteins/metabolism , Plant Diseases/microbiology , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Transcription Factors/metabolism , Verticillium/pathogenicity , Virulence
6.
Int J Mol Sci ; 23(5)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35269884

ABSTRACT

Host-induced gene silencing (HIGS) based on trans-kingdom RNA interference (RNAi) has been successfully exploited to engineer host resistance to pests and pathogens, including fungi and oomycetes. However, revealing the mechanisms underlying trans-kingdom RNAi between hosts and pathogens lags behind applications. The effectiveness and durability of trans-kingdom silencing of pathogenic genes are uncharacterized. In this study, using our transgenic 35S-VdH1i cotton plants in which dsVdH1-derived small RNAs (siVdH1) accumulated, small RNA sequencing analysis revealed that siVdH1s exclusively occur within the double-stranded (ds)VdH1 region, and no transitive siRNAs were produced beyond this region in recovered hyphae of Verticillium dahliae (V. dahliae). Accordingly, we found that VdH1 silencing was reduced over time in recovered hyphae cultured in vitro, inferring that once the fungus got rid of the 35S-VdH1i cotton plants would gradually regain their pathogenicity. To explore whether continually exporting dsRNAs/siRNAs from transgenic plants into recipient fungal cells guaranteed the effectiveness and stability of HIGS, we created GFP/RFP double-labeled V. dahliae and transgenic Arabidopsis expressing dsGFP (35S-GFPi plants). Confocal images visually demonstrate the efficient silencing of GFP in V. dahliae that colonized host vascular tissues. Taken together, our results demonstrate that HIGS effectively triggers long-lasting trans-kingdom RNAi during plant vasculature V. dahliae interactions, despite no amplification or transitivity of RNAi being noted in this soil-borne fungal pathogen.


Subject(s)
Arabidopsis , Verticillium , Arabidopsis/genetics , Arabidopsis/microbiology , Disease Resistance/genetics , Genes, Fungal , Gossypium/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plants, Genetically Modified/genetics , RNA, Small Interfering/genetics , Verticillium/genetics
7.
J Integr Plant Biol ; 64(2): 476-498, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34964265

ABSTRACT

RNA silencing (or RNA interference, RNAi) is a conserved mechanism for regulating gene expression in eukaryotes. The discovery of natural trans-kingdom RNAi indicated that small RNAs act as signaling molecules and enable communication between organisms in different kingdoms. The phenomenon and potential mechanisms of trans-kingdom RNAi are among the most exciting research topics. To better understand trans-kingdom RNAi, we review the history of the discovery and elucidation of RNAi mechanisms. Based on canonical RNAi mechanisms, we summarize the major points of divergence around RNAi pathways in the main eukaryotes' kingdoms, including plants, animals, and fungi. We review the representative incidents associated with the mechanisms and applications of trans-kingdom RNAi in crop protection, and discuss the critical factors that should be considered to develop successful trans-kingdom RNAi-based crop protection strategies.


Subject(s)
Fungi , Plants , Animals , Fungi/genetics , Plants/genetics , RNA Interference , RNA, Small Interfering/genetics
8.
J Neurochem ; 156(4): 524-538, 2021 02.
Article in English | MEDLINE | ID: mdl-32683701

ABSTRACT

Many of the genes whose mutation causes Amyotrophic Lateral Sclerosis (ALS) are RNA-binding proteins which localize to stress granules, while others impact the assembly, stability, and elimination of stress granules. This has led to the hypothesis that alterations in the dynamics of stress granules and RNA biology cause ALS. Genetic mutations in Superoxide Dismutase 1 (SOD1) also cause ALS. Evidence demonstrates that SOD1 harboring ALS-linked mutations is recruited to stress granules, induces changes in alternative splicing, and could be an RNA-binding protein. Whether SOD1 inclusions contain RNA in disease models and whether SOD1 directly binds RNA remains uncertain. We applied methods including cross-linking immunoprecipitation and in vitro gel shift assays to detect binding of SOD1 to RNA in vitro, in cells with and without stress granules, and in mice expressing human SOD1 G93A. We find that SOD1 localizes to RNA-rich structures including stress granules, and SOD1 inclusions in mice contain mRNA. However, we find no evidence that SOD1 directly binds RNA. This suggests that SOD1 may impact stress granules, alternative splicing and RNA biology without binding directly to RNA.


Subject(s)
Cytoplasmic Granules/metabolism , Mutation/physiology , RNA/metabolism , Superoxide Dismutase/metabolism , Animals , Cytoplasmic Granules/chemistry , Cytoplasmic Granules/genetics , HeLa Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Protein Binding/physiology , Protein Structure, Tertiary , RNA/analysis , RNA/genetics , Superoxide Dismutase/analysis , Superoxide Dismutase/genetics
9.
PLoS Pathog ; 13(3): e1006275, 2017 03.
Article in English | MEDLINE | ID: mdl-28282450

ABSTRACT

Successful infection of the host requires secretion of effector proteins to evade or suppress plant immunity. Secretion of effectors in root-infecting fungal pathogens, however, remains unexplored. We previously reported that Verticillium dahliae, a root-infecting phytopathogenic fungus, develops a penetration peg from a hyphopodium to infect cotton roots. In this study, we report that a septin ring, requiring VdSep5, partitions the hyphopodium and the invasive hypha and form the specialized fungus-host interface. The mutant strain, VdΔnoxb, in which NADPH oxidase B (VdNoxB) is deleted, impaired formation of the septin ring at the hyphal neck, indicating that NADPH oxidases regulate septin ring organization. Using GFP tagging and live cell imaging, we observed that several signal peptide containing secreted proteins showed ring signal accumulation/secretion at the penetration interface surrounding the hyphal neck. Targeted mutation for VdSep5 reduced the delivery rate of secretory proteins to the penetration interface. Blocking the secretory pathway by disrupting the vesicular trafficking factors, VdSec22 and VdSyn8, or the exocyst subunit, VdExo70, also arrested delivery of the secreted proteins inside the hyphopodium. Reduced virulence was observed when cotton roots were infected with VdΔsep5, VdΔsec22, VdΔsyn8 and VdΔexo70 mutants compared to infection with the isogenic wild-type V592. Taken together, our data demonstrate that the hyphal neck is an important site for protein secretion during plant root infection, and that the multiple secretory routes are involved in the secretion.


Subject(s)
Host-Pathogen Interactions/physiology , Plant Diseases/parasitology , Septins/metabolism , Verticillium/pathogenicity , Fluorescence Recovery After Photobleaching , Fungal Proteins/metabolism , Gene Knockout Techniques , Gossypium/parasitology , Hyphae/ultrastructure , Microscopy, Electron, Transmission , Plant Roots/parasitology , Real-Time Polymerase Chain Reaction , Verticillium/ultrastructure
10.
PLoS Pathog ; 12(7): e1005793, 2016 07.
Article in English | MEDLINE | ID: mdl-27463643

ABSTRACT

Verticillium dahliae is a phytopathogenic fungus obligate in root infection. A few hyphopodia differentiate from large numbers of hyphae after conidia germination on the root surface for further infection. However, the molecular features and role of hyphopodia in the pathogenicity of V. dahliae remain elusive. In this study, we found that the VdPls1, a tetraspanin, and the VdNoxB, a catalytic subunit of membrane-bound NADPH oxidases for reactive oxygen species (ROS) production, were specifically expressed in hyphopodia. VdPls1 and VdNoxB highly co-localize with the plasma membrane at the base of hyphopodia, where ROS and penetration pegs are generated. Mutant strains, VdΔnoxb and VdΔpls1, in which VdPls1 and VdNoxB were deleted, respectively, developed defective hyphpodia incapable of producing ROS and penetration pegs. Defective plasma membrane localization of VdNoxB in VdΔpls1 demonstrates that VdPls1 functions as an adaptor protein for the recruitment and activation of the VdNoxB. Furthermore, in VdΔnoxb and VdΔpls1, tip-high Ca2+ accumulation was impaired in hyphopodia, but not in vegetative hyphal tips. Moreover, nuclear targeting of VdCrz1 and activation of calcineurin-Crz1 signaling upon hyphopodium induction in wild-type V. dahliae was impaired in both knockout mutants, indicating that VdPls1/VdNoxB-dependent ROS was specifically required for tip-high Ca2+ elevation in hyphopodia to activate the transcription factor VdCrz1 in the regulation of penetration peg formation. Together with the loss of virulence of VdΔnoxb and VdΔpls1, which are unable to initiate colonization in cotton plants, our data demonstrate that VdNoxB/VdPls1-mediated ROS production activates VdCrz1 signaling through Ca2+ elevation in hyphopodia, infectious structures of V. dahliae, to regulate penetration peg formation during the initial colonization of cotton roots.


Subject(s)
Calcium Signaling/physiology , Fungal Proteins/metabolism , Plant Diseases/microbiology , Reactive Oxygen Species/metabolism , Verticillium/pathogenicity , Blotting, Southern , Gene Expression Regulation, Fungal/physiology , Gossypium/microbiology , Hyphae , Immunoprecipitation , Microscopy, Electron , Mycoses/metabolism , Plant Roots/microbiology , Real-Time Polymerase Chain Reaction , Two-Hybrid System Techniques , Verticillium/metabolism , Virulence/physiology
11.
Plant Cell ; 27(3): 574-90, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25794935

ABSTRACT

MicroRNAs function in a range of developmental processes. Here, we demonstrate that miR847 targets the mRNA of the auxin/indole acetic acid (Aux/IAA) repressor-encoding gene IAA28 for cleavage. The rapidly increased accumulation of miR847 in Arabidopsis thaliana coincided with reduced IAA28 mRNA levels upon auxin treatment. This induction of miR847 by auxin was abolished in auxin receptor tir1-1 and auxin-resistant axr1-3 mutants. Further analysis demonstrates that miR847 functions as a positive regulator of auxin-mediated lateral organ development by cleaving IAA28 mRNA. Importantly, the ectopic expression of miR847 increases the expression of cell cycle genes as well as the neoplastic activity of leaf cells, prolonging later-stage rosette leaf growth and producing leaves with serrated margins. Moreover, both miR847 and IAA28 mRNAs are specifically expressed in marginal meristems of rosette leaves and lateral root initiation sites. Our data indicate that auxin-dependent induction of miR847 positively regulates meristematic competence by clearing IAA28 mRNA to upregulate auxin signaling, thereby determining the duration of cell proliferation and lateral organ growth in Arabidopsis. IAA28 mRNA encodes an Aux/IAA repressor protein, which is degraded through the proteasome in response to auxin. Altered signal sensitization to IAA28 mRNA levels, together with targeted IAA28 degradation, ensures a robust signal derepression.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/growth & development , Arabidopsis/genetics , Indoleacetic Acids/metabolism , MicroRNAs/metabolism , Organ Specificity/genetics , Transcription Factors/genetics , Up-Regulation/genetics , Arabidopsis/cytology , Arabidopsis/drug effects , Arabidopsis Proteins/metabolism , Base Sequence , Cell Proliferation/drug effects , Down-Regulation/drug effects , Gene Expression Profiling , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Plant/drug effects , Indoleacetic Acids/pharmacology , MicroRNAs/genetics , Molecular Sequence Data , Mutation/genetics , Organ Specificity/drug effects , Phenotype , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/growth & development , Plants, Genetically Modified , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Transcription Factors/metabolism , Up-Regulation/drug effects
12.
PLoS Genet ; 11(1): e1004906, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25568943

ABSTRACT

Satellite RNAs (satRNAs) are small noncoding subviral RNA pathogens in plants that depend on helper viruses for replication and spread. Despite many decades of research, the origin of satRNAs remains unknown. In this study we show that a ß-glucuronidase (GUS) transgene fused with a Cucumber mosaic virus (CMV) Y satellite RNA (Y-Sat) sequence (35S-GUS:Sat) was transcriptionally repressed in N. tabacum in comparison to a 35S-GUS transgene that did not contain the Y-Sat sequence. This repression was not due to DNA methylation at the 35S promoter, but was associated with specific DNA methylation at the Y-Sat sequence. Both northern blot hybridization and small RNA deep sequencing detected 24-nt siRNAs in wild-type Nicotiana plants with sequence homology to Y-Sat, suggesting that the N. tabacum genome contains Y-Sat-like sequences that give rise to 24-nt sRNAs capable of guiding RNA-directed DNA methylation (RdDM) to the Y-Sat sequence in the 35S-GUS:Sat transgene. Consistent with this, Southern blot hybridization detected multiple DNA bands in Nicotiana plants that had sequence homology to Y-Sat, suggesting that Y-Sat-like sequences exist in the Nicotiana genome as repetitive DNA, a DNA feature associated with 24-nt sRNAs. Our results point to a host genome origin for CMV satRNAs, and suggest novel approach of using small RNA sequences for finding the origin of other satRNAs.


Subject(s)
Cucumber Mosaic Virus Satellite/genetics , Cucumovirus/genetics , Glucuronidase/genetics , Nicotiana/genetics , Cucumovirus/pathogenicity , DNA Methylation/genetics , Gene Silencing , Genome, Plant , Helper Viruses/genetics , Plants, Genetically Modified , RNA, Small Interfering , Sequence Analysis, RNA , Nicotiana/virology , Transgenes
13.
New Phytol ; 215(1): 368-381, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28407259

ABSTRACT

Fungal pathogens secrete effector proteins to suppress plant basal defense for successful colonization. Resistant plants, however, can recognize effectors by cognate R proteins to induce effector-triggered immunity (ETI). By analyzing secretomes of the vascular fungal pathogen Verticillium dahliae, we identified a novel secreted protein VdSCP7 that targets the plant nucleus. The green fluorescent protein (GFP)-tagged VdSCP7 gene with either a mutated nuclear localization signal motif or with additional nuclear export signal was transiently expressed in Nicotiana benthamiana, and investigated for induction of plant immunity. The role of VdSCP7 in V. dahliae pathogenicity was characterized by gene knockout and complementation, and GFP labeling. Expression of the VdSCP7 gene in N. benthamiana activated both salicylic acid and jasmonate signaling, and altered the plant's susceptibility to the pathogens Botrytis cinerea and Phytophthora capsici. The immune response activated by VdSCP7 was highly dependent on its initial extracellular secretion and subsequent nuclear localization in plants. Knockout of the VdSCP7 gene significantly enhanced V. dahliae aggressiveness on cotton. GFP-labeled VdSCP7 is secreted by V. dahliae and accumulates in the plant nucleus. We conclude that VdSCP7 is a novel effector protein that targets the host nucleus to modulate plant immunity, and suggest that plants can recognize VdSCP7 to activate ETI during fungal infection.


Subject(s)
Cell Nucleus/metabolism , Fungal Proteins/physiology , Plant Diseases/microbiology , Verticillium/pathogenicity , Fungal Proteins/analysis , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Plant Immunity , Reactive Oxygen Species/metabolism , Verticillium/metabolism
14.
EMBO Rep ; 16(10): 1334-57, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26265008

ABSTRACT

In embryonic stem cells (ESCs), gene regulatory networks (GRNs) coordinate gene expression to maintain ESC identity; however, the complete repertoire of factors regulating the ESC state is not fully understood. Our previous temporal microarray analysis of ESC commitment identified the E3 ubiquitin ligase protein Makorin-1 (MKRN1) as a potential novel component of the ESC GRN. Here, using multilayered systems-level analyses, we compiled a MKRN1-centered interactome in undifferentiated ESCs at the proteomic and ribonomic level. Proteomic analyses in undifferentiated ESCs revealed that MKRN1 associates with RNA-binding proteins, and ensuing RIP-chip analysis determined that MKRN1 associates with mRNAs encoding functionally related proteins including proteins that function during cellular stress. Subsequent biological validation identified MKRN1 as a novel stress granule-resident protein, although MKRN1 is not required for stress granule formation, or survival of unstressed ESCs. Thus, our unbiased systems-level analyses support a role for the E3 ligase MKRN1 as a ribonucleoprotein within the ESC GRN.


Subject(s)
Embryonic Stem Cells/physiology , Gene Regulatory Networks/genetics , Nerve Tissue Proteins/genetics , Ribonucleoproteins/genetics , Animals , Cytoplasm/metabolism , Genomics , Mice , Nerve Tissue Proteins/chemistry , Proteomics , RNA/metabolism , RNA-Binding Proteins/metabolism , Ribonucleoproteins/chemistry , Ubiquitin-Protein Ligases/metabolism
15.
Breast Cancer Res Treat ; 156(1): 149-62, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26902609

ABSTRACT

Estrogen receptor (ER)-ß has been discovered for decades; however, its prognostic value in breast cancer patients remains controversial. We aimed to evaluate the impact of ER-ß expression on breast cancer survival. A systematic search of Medline, Embase, and Cochrane Library was performed to identify the association between ER-ß expression and outcomes in early breast cancer patients. Random-effects meta-analysis was conducted to generate combined hazard ratios (HRs) with 95 % confidence intervals (CIs) for overall survival (OS) and disease-free survival (DFS). A total of 6769 patients for ER-ß1, 2295 patients for ER-ß2, and 2271 patients for ER-ß5 from 21 studies were included. ER-ß1 protein expression was correlated with both favorable 5-year DFS and OS (HR 0.690, 95 % CI 0.610-0.779; P < 0.001; HR 0.632, 95 % CI 0.533-0.749; P < 0.001), while ER-ß1 mRNA had no significant association with DFS (HR 0.915, 95 % CI 0.581-1.440, P = 0.700). ER-ß2 protein was associated with improved DFS (HR 0.799, 95 % CI 0.644-0.992; P = 0.042), but not OS (HR 0.958, 95 % CI 0.762-1.205; P = 0.712). ER-ß5 protein was not significantly associated with DFS (HR 1.070, 95 % CI 0.810-1.410; P = 0.642). Subgroup analysis showed that higher ER-ß1 expression was associated with better 5-year DFS in both ER-α positive and negative patients, but the positive association between ER-ß1 expression and 5-year OS was only seen in ER-α positive patients. Wild-type ER-ß (ER-ß1) and its variant ER-ß2 protein expressions are associated with better survival in early breast cancer patients. The prognostic significance of ER-ß1 for DFS is independent of ER-α coexpression, whereas the impact on OS was only in ER-α positive breast cancer.


Subject(s)
Breast Neoplasms/pathology , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Adult , Aged , Aged, 80 and over , Alternative Splicing , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Prognosis , Proportional Hazards Models , Survival Analysis
16.
Phytopathology ; 106(6): 645-52, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26780432

ABSTRACT

The soilborne fungal pathogen Verticillium dahliae infects a broad range of plant species to cause severe diseases. The availability of Verticillium genome sequences has provided opportunities for large-scale investigations of individual gene function in Verticillium strains using Agrobacterium tumefaciens-mediated transformation (ATMT)-based gene-disruption strategies. Traditional ATMT vectors require multiple cloning steps and elaborate characterization procedures to achieve successful gene replacement; thus, these vectors are not suitable for high-throughput ATMT-based gene deletion. Several advancements have been made that either involve simplification of the steps required for gene-deletion vector construction or increase the efficiency of the technique for rapid recombinant characterization. However, an ATMT binary vector that is both simple and efficient is still lacking. Here, we generated a USER-ATMT dual-selection (DS) binary vector, which combines both the advantages of the USER single-step cloning technique and the efficiency of the herpes simplex virus thymidine kinase negative-selection marker. Highly efficient deletion of three different genes in V. dahliae using the USER-ATMT-DS vector enabled verification that this newly-generated vector not only facilitates the cloning process but also simplifies the subsequent identification of fungal homologous recombinants. The results suggest that the USER-ATMT-DS vector is applicable for efficient gene deletion and suitable for large-scale gene deletion in V. dahliae.


Subject(s)
Agrobacterium tumefaciens/physiology , Cloning, Molecular , Verticillium/genetics , Gene Deletion , Transformation, Genetic
17.
Plant Cell ; 24(1): 259-74, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22247253

ABSTRACT

Unique among the known plant and animal viral suppressors of RNA silencing, the 2b protein interacts directly with both small interfering RNA (siRNA) and ARGONAUTE1 (AGO1) and AGO4 proteins and is targeted to the nucleolus. However, it is largely unknown which regions of the 111-residue 2b protein determine these biochemical properties and how they contribute to its diverse silencing suppressor activities. Here, we identified a functional nucleolar localization signal encoded within the 61-amino acid N-terminal double-stranded RNA (dsRNA) binding domain (dsRBD) that exhibited high affinity for short and long dsRNA. However, physical interaction of 2b with AGOs required an essential 33-residue region C-terminal to the dsRBD and was sufficient to inhibit the in vitro AGO1 Slicer activity independently of its dsRNA binding activities. Furthermore, the direct 2b-AGO interaction was not essential for the 2b suppression of posttranscriptional gene silencing (PTGS) and RNA-directed DNA methylation (RdDM) in vivo. Lastly, we found that the 2b-AGO interactions in vivo also required the nucleolar targeting of 2b and had the potential to redistribute both the 2b and AGO proteins in nucleus. These findings together suggest that 2b may suppress PTGS and RdDM in vivo by binding and sequestering siRNA and the long dsRNA precursor in a process that is facilitated by its interactions with AGOs in the nucleolus.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Argonaute Proteins/metabolism , DNA Methylation/genetics , Viral Proteins/metabolism , Arabidopsis Proteins/genetics , Argonaute Proteins/genetics , Molecular Sequence Data , RNA Interference/physiology , RNA, Double-Stranded/genetics , RNA, Small Interfering , Viral Proteins/genetics
18.
Plant J ; 73(6): 910-7, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23176533

ABSTRACT

Cytosine methylation is one of epigenetic information marked on the DNA sequence. In plants, small interfering RNAs (siRNAs) target homologous genomic DNA sequences for cytosine methylation. This process, known as RNA-directed DNA methylation (RdDM), plays an important role in transposon control, regulation of gene expression and virus resistance. In this paper, we demonstrate that the C2 protein encoded by a geminivirus (beet severe curly top virus, BSCTV) mediated a decrease in DNA methylation of repeat regions in the promoters of ACD6, an upstream regulator of the salicylic acid defense pathway, and GSTF14, an endogenous gene of the glutathione S-transferase superfamily that is implicated in numerous stress responses. C2-mediated decreases in DNA methylation reduced accumulation of the siRNAs derived from the promoter repeats and enhanced the steady-state expression of both ACD6 and GSTF14 transcripts. Reduced accumulation of BSCTV-derived siRNAs was detected in BSCTV-infected plants, but not in plants infected with C2-deficient BSCTV (c2(- ) BSCTV). C2 protein exhibited no siRNA-binding activity. Instead, our results revealed that C2 protein-mediated decreases in DNA methylation appeared to affect the production of siRNAs that are required for targeting and reinforcing RdDM, a process that activated expression of defense-related genes that are normally dampened by these siRNAs in the host plants. However, C2-dependent reduction in virus-derived siRNAs also benefits the viruses by disrupting the feedback loop reinforcing DNA methylation-mediated antiviral silencing.


Subject(s)
Arabidopsis/genetics , Arabidopsis/virology , DNA Methylation , Geminiviridae/pathogenicity , Gene Expression Regulation, Plant , Host-Pathogen Interactions/genetics , Viral Proteins/metabolism , Ankyrins/genetics , Arabidopsis Proteins/genetics , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic , RNA, Small Interfering/genetics , Salicylic Acid/metabolism , Viral Proteins/genetics
19.
Plant Cell ; 23(1): 273-88, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21245466

ABSTRACT

Plant viruses are excellent tools for studying microbial-plant interactions as well as the complexities of host activities. Our study focuses on the role of C2 encoded by Beet severe curly top virus (BSCTV) in the virus-plant interaction. Using BSCTV C2 as bait in a yeast two-hybrid screen, a C2-interacting protein, S-adenosyl-methionine decarboxylase 1 (SAMDC1), was identified from an Arabidopsis thaliana cDNA library. The interaction was confirmed by an in vitro pull-down assay and a firefly luciferase complemention imaging assay in planta. Biochemical analysis further showed that the degradation of the SAMDC1 protein was inhibited by MG132, a 26S proteasome inhibitor, and that C2 could attenuate the degradation of the SAMDC1 protein. Genetic analysis showed that loss of function of SAMDC1 resulted in reduced susceptibility to BSCTV infection and reduced viral DNA accumulation, similar to the effect of BSCTV C2 deficiency. Bisulfite sequencing analysis further showed that C2 deficiency caused enhanced DNA methylation of the viral genome in infected plants. We also showed that C2 can suppress de novo methylation in the FWA transgenic assay in the C2 transgene background. Overexpression of SAMDC1 can mimic the suppressive activity of C2 against green fluorescent protein-directed silencing. These results suggest that C2 interferes with the host defense mechanism of DNA methylation-mediated gene silencing by attenuating the 26S proteasome-mediated degradation of SAMDC1.


Subject(s)
Adenosylmethionine Decarboxylase/chemistry , Arabidopsis/virology , DNA Methylation , DNA-Binding Proteins/metabolism , Geminiviridae/genetics , Gene Silencing , Viral Proteins/metabolism , Arabidopsis/enzymology , DNA-Binding Proteins/genetics , Geminiviridae/metabolism , Genome, Viral , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/virology , Two-Hybrid System Techniques , Viral Proteins/genetics
20.
aBIOTECH ; 5(1): 17-28, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38576436

ABSTRACT

Small RNA (sRNA)-mediated RNA silencing (also known as RNA interference, or RNAi) is a conserved mechanism in eukaryotes that includes RNA degradation, DNA methylation, heterochromatin formation and protein translation repression. In plants, sRNAs can move either cell-to-cell or systemically, thereby acting as mobile silencing signals to trigger noncell autonomous silencing. However, whether and what proteins are also involved in noncell autonomous silencing have not been elucidated. In this study, we utilized a previously reported inducible RNAi plant, PDSi, which can induce systemic silencing of the endogenous PDS gene, and we demonstrated that DCL3 is involved in systemic PDS silencing through its RNA binding activity. We confirmed that the C-terminus of DCL3, including the predicted RNA-binding domain, is capable of binding short RNAs. Mutations affecting RNA binding, but not processing activity, reduced systemic PDS silencing, indicating that DCL3 binding to RNAs is required for the induction of systemic silencing. Cucumber mosaic virus infection assays showed that the RNA-binding activity of DCL3 is required for antiviral RNAi in systemically noninoculated leaves. Our findings demonstrate that DCL3 acts as a signaling agent involved in noncell autonomous silencing and an antiviral effect in addition to its previously known function in the generation of 24-nucleotide sRNAs. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00124-6.

SELECTION OF CITATIONS
SEARCH DETAIL