Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Entropy (Basel) ; 23(8)2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34441223

ABSTRACT

We study Arrow's Impossibility Theorem in the quantum setting. Our work is based on the work of Bao and Halpern, in which it is proved that the quantum analogue of Arrow's Impossibility Theorem is not valid. However, we feel unsatisfied about the proof presented in Bao and Halpern's work. Moreover, the definition of Quantum Independence of Irrelevant Alternatives (QIIA) in Bao and Halpern's work seems not appropriate to us. We give a better definition of QIIA, which properly captures the idea of the independence of irrelevant alternatives, and a detailed proof of the violation of Arrow's Impossibility Theorem in the quantum setting with the modified definition.

2.
Leukemia ; 38(5): 969-980, 2024 May.
Article in English | MEDLINE | ID: mdl-38519798

ABSTRACT

The presence of supernumerary chromosomes is the only abnormality shared by all patients diagnosed with high-hyperdiploid B cell acute lymphoblastic leukemia (HD-ALL). Despite being the most frequently diagnosed pediatric leukemia, the lack of clonal molecular lesions and complete absence of appropriate experimental models have impeded the elucidation of HD-ALL leukemogenesis. Here, we report that for 23 leukemia samples isolated from moribund Eµ-Ret mice, all were characterized by non-random chromosomal gains, involving combinations of trisomy 9, 12, 14, 15, and 17. With a median gain of three chromosomes, leukemia emerged after a prolonged latency from a preleukemic B cell precursor cell population displaying more diverse aneuploidy. Transition from preleukemia to overt disease in Eµ-Ret mice is associated with acquisition of heterogeneous genomic abnormalities affecting the expression of genes implicated in pediatric B-ALL. The development of abnormal centrosomes in parallel with aneuploidy renders both preleukemic and leukemic cells sensitive to inhibitors of centrosome clustering, enabling targeted in vivo depletion of leukemia-propagating cells. This study reveals the Eµ-Ret mouse to be a novel tool for investigating HD-ALL leukemogenesis, including supervision and selection of preleukemic aneuploid clones by the immune system and identification of vulnerabilities that could be targeted to prevent relapse.


Subject(s)
Disease Models, Animal , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Animals , Mice , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Aneuploidy , Humans , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Centrosome/pathology , Diploidy
3.
Nat Commun ; 14(1): 7161, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37989729

ABSTRACT

Childhood acute lymphoblastic leukemia (ALL) genomes show that relapses often arise from subclonal outgrowths. However, the impact of clonal evolution on the actionable proteome and response to targeted therapy is not known. Here, we present a comprehensive retrospective analysis of paired ALL diagnosis and relapsed specimen. Targeted next generation sequencing and proteome analysis indicate persistence of actionable genome variants and stable proteomes through disease progression. Paired viably-frozen biopsies show high correlation of drug response to variant-targeted therapies but in vitro selectivity is low. Proteome analysis prioritizes PARP1 as a pan-ALL target candidate needed for survival following cellular stress; diagnostic and relapsed ALL samples demonstrate robust sensitivity to treatment with two PARP1/2 inhibitors. Together, these findings support initiating prospective precision oncology approaches at ALL diagnosis and emphasize the need to incorporate proteome analysis to prospectively determine tumor sensitivities, which are likely to be retained at disease relapse.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Proteome , Child , Humans , Proteome/genetics , Mutation , Retrospective Studies , Prospective Studies , Precision Medicine , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Recurrence
4.
Cancers (Basel) ; 15(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36612150

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common form of cancer in children, with most cases arising from fetal B cell precursor, termed B-ALL. Here, we use immunofluorescence analysis of B-ALL cells to identify centrosome amplification events that require the centrosome clustering pathway to successfully complete mitosis. Our data reveals that primary human B-ALL cells and immortal B-ALL cell lines from both human and mouse sources show defective bipolar spindle formation, abnormal mitotic progression, and cell death following treatment with centrosome clustering inhibitors (CCI). We demonstrate that CCI-refractory B-ALL cells exhibit markers for increased genomic instability, including DNA damage and micronuclei, as well as activation of the cyclic GMP-AMP synthase (cGAS)-nuclear factor kappa B (NF-κB) signalling pathway. Our analysis of cGAS knock-down B-ALL clones implicates cGAS in the sensitivity of B-ALL cells to CCI treatment. Due to its integral function and specificity to cancer cells, the centrosome clustering pathway presents a powerful molecular target for cancer treatment while mitigating the risk to healthy cells.

SELECTION OF CITATIONS
SEARCH DETAIL