Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 294
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nucleic Acids Res ; 52(8): 4257-4275, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38366571

ABSTRACT

Complex biological processes are regulated by both genetic and epigenetic programs. One class of epigenetic modifications is methylation. Evolutionarily conserved methyl-CpG-binding domain (MBD)-containing proteins are known as readers of DNA methylation. MBD5 is linked to multiple human diseases but its mechanism of action remains unclear. Here we report that the zebrafish Mbd5 does not bind to methylated DNA; but rather, it directly binds to 5-methylcytosine (m5C)-modified mRNAs and regulates embryonic development, erythrocyte differentiation, iron metabolism, and behavior. We further show that Mbd5 facilitates removal of the monoubiquitin mark at histone H2A-K119 through an interaction with the Polycomb repressive deubiquitinase (PR-DUB) complex in vivo. The direct target genes of Mbd5 are enriched with both RNA m5C and H2A-K119 ubiquitylation signals. Together, we propose that zebrafish MBD5 is an RNA m5C reader that potentially links RNA methylation to histone modification and in turn transcription regulation in vivo.


Subject(s)
5-Methylcytosine , Histones , Ubiquitination , Zebrafish Proteins , Zebrafish , Animals , Histones/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics , 5-Methylcytosine/metabolism , Gene Expression Regulation, Developmental , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , DNA Methylation , Embryonic Development/genetics , Epigenesis, Genetic
2.
Nat Methods ; 19(7): 881-892, 2022 07.
Article in English | MEDLINE | ID: mdl-35697835

ABSTRACT

Current imaging approaches limit the ability to perform multi-scale characterization of three-dimensional (3D) organotypic cultures (organoids) in large numbers. Here, we present an automated multi-scale 3D imaging platform synergizing high-density organoid cultures with rapid and live 3D single-objective light-sheet imaging. It is composed of disposable microfabricated organoid culture chips, termed JeWells, with embedded optical components and a laser beam-steering unit coupled to a commercial inverted microscope. It permits streamlining organoid culture and high-content 3D imaging on a single user-friendly instrument with minimal manipulations and a throughput of 300 organoids per hour. We demonstrate that the large number of 3D stacks that can be collected via our platform allows training deep learning-based algorithms to quantify morphogenetic organizations of organoids at multi-scales, ranging from the subcellular scale to the whole organoid level. We validated the versatility and robustness of our approach on intestine, hepatic, neuroectoderm organoids and oncospheres.


Subject(s)
Imaging, Three-Dimensional , Organoids , Intestines
3.
Support Care Cancer ; 32(3): 168, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38374448

ABSTRACT

PURPOSE: The recent trend of Internet-based digital health interventions has driven researchers to implement them to promote physical activity (PA) and improve patients' health outcomes. This systematic review and meta-analysis aim to evaluate the effects of Internet-based digital health interventions on PA and quality of life (QoL) in colorectal cancer (CRC) survivors. METHODS: We searched for relevant studies investigating the effects of internet-based digital health interventions published until Dec. 2022 in electronic databases (PubMed, CINAHL, EMBASE, Cochrane Central Register of Controlled Trials, and CEPS) according to PRISMA guidelines. The Joanna Briggs Institute critical appraisal checklist was used to examine the quality of the included studies. We performed the fixed and random effects model for meta-analysis. RESULTS: Among 746 identified studies, eight published between 2018 and 2022 were included. These covered 991 internet-based digital health interventions and 875 controls. After 6 months of internet-based digital health interventions, CRC survivors' performance in PA (standardized mean difference (SMD) = 0.23, 95% confidence interval [CI] = 0.09-0.38) and QoL (SMD = 0.11, 95% CI = 0.01-0.22) indicators improved significantly. CONCLUSIONS: Internet-based digital health improved the PA behaviour and QoL of patients with CRC. Because of differences in intervention outcomes, additional randomized controlled trials are warranted to provide suggestions for clinical practice. Internet-based digital health interventions are promising for promoting PA in CRC survivors.

4.
Mol Psychiatry ; 27(9): 3777-3793, 2022 09.
Article in English | MEDLINE | ID: mdl-35484242

ABSTRACT

Salient sensory stimuli are perceived by the brain, which guides both the timing and outcome of behaviors in a context-dependent manner. Light is such a stimulus, which is used in treating mood disorders often associated with a dysregulated hypothalamic-pituitary-adrenal stress axis. Relationships between the emotional valence of light and the hypothalamus, and how they interact to exert brain-wide impacts remain unclear. Employing larval zebrafish with analogous hypothalamic systems to mammals, we show in free-swimming animals that hypothalamic corticotropin releasing factor (CRFHy) neurons promote dark avoidance, and such role is not shared by other hypothalamic peptidergic neurons. Single-neuron projection analyses uncover processes extended by individual CRFHy neurons to multiple targets including sensorimotor and decision-making areas. In vivo calcium imaging uncovers a complex and heterogeneous response of individual CRFHy neurons to the light or dark stimulus, with a reduced overall sum of CRF neuronal activity in the presence of light. Brain-wide calcium imaging under alternating light/dark stimuli further identifies distinct and distributed photic response neuronal types. CRFHy neuronal ablation increases an overall representation of light in the brain and broadly enhances the functional connectivity associated with an exploratory brain state. These findings delineate brain-wide photic perception, uncover a previously unknown role of CRFHy neurons in regulating the perception and emotional valence of light, and suggest that light therapy may alleviate mood disorders through reducing an overall sum of CRF neuronal activity.


Subject(s)
Corticotropin-Releasing Hormone , Paraventricular Hypothalamic Nucleus , Animals , Corticotropin-Releasing Hormone/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Calcium , Zebrafish/metabolism , Hypothalamus/metabolism , Neurons/metabolism , Brain/metabolism , Perception , Mammals/metabolism
5.
BMC Biol ; 20(1): 84, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35410342

ABSTRACT

BACKGROUND: The structural connectivity of neurons in the brain allows active neurons to impact the physiology of target neuron types with which they are functionally connected. While the structural connectome is at the basis of functional connectome, it is the functional connectivity measured through correlations between time series of individual neurophysiological events that underlies behavioral and mental states. However, in light of the diverse neuronal cell types populating the brain and their unique connectivity properties, both neuronal activity and functional connectivity are heterogeneous across the brain, and the nature of their relationship is not clear. Here, we employ brain-wide calcium imaging at cellular resolution in larval zebrafish to understand the principles of resting state functional connectivity. RESULTS: We recorded the spontaneous activity of >12,000 neurons in the awake resting state forebrain. By classifying their activity (i.e., variances of ΔF/F across time) and functional connectivity into three levels (high, medium, low), we find that highly active neurons have low functional connections and highly connected neurons are of low activity. This finding holds true when neuronal activity and functional connectivity data are classified into five instead of three levels, and in whole brain spontaneous activity datasets. Moreover, such activity-connectivity relationship is not observed in randomly shuffled, noise-added, or simulated datasets, suggesting that it reflects an intrinsic brain network property. Intriguingly, deploying the same analytical tools on functional magnetic resonance imaging (fMRI) data from the resting state human brain, we uncover a similar relationship between activity (signal variance over time) and functional connectivity, that is, regions of high activity are non-overlapping with those of high connectivity. CONCLUSIONS: We found a mutually exclusive relationship between high activity (signal variance over time) and high functional connectivity of neurons in zebrafish and human brains. These findings reveal a previously unknown and evolutionarily conserved brain organizational principle, which has implications for understanding disease states and designing artificial neuronal networks.


Subject(s)
Connectome , Zebrafish , Animals , Brain/diagnostic imaging , Brain/physiology , Humans , Magnetic Resonance Imaging/methods , Nerve Net/physiology , Neurons
6.
Chem Res Toxicol ; 35(10): 1814-1820, 2022 10 17.
Article in English | MEDLINE | ID: mdl-35584366

ABSTRACT

Understanding the occurrence, repair, and biological consequences of DNA damage is important in environmental toxicology and risk assessment. The most common way to assess DNA damage elicited by exogenous sources in a laboratory setting is to expose cells or experimental animals with chemicals that modify DNA. Owing to the lack of reaction specificities of DNA damaging agents, the approach frequently does not allow for induction of a specific DNA lesion. Herein, we employed metabolic labeling to selectively incorporate N2-methyl-dG (N2-MedG) and N2-n-butyl-dG (N2-nBudG) into genomic DNA of cultured mammalian cells, and investigated how the levels of the two lesions in cellular DNA are modulated by different DNA repair factors. Our results revealed that nucleotide excision repair (NER) exert moderate effects on the removal of N2-MedG and N2-nBudG from genomic DNA. We also observed that DNA polymerases κ and η contribute to the incorporation of N2-MedG into genomic DNA and modulate its repair in human cells. In addition, loss of ALKBH3 resulted in higher frequencies of N2-MedG and N2-nBuG incorporation into genomic DNA, suggesting a role of oxidative dealkylation in the reversal of these lesions. Together, our study provided new insights into the repair of minor-groove N2-alkyl-dG lesions in mammalian cells.


Subject(s)
Deoxyguanosine , Tandem Mass Spectrometry , AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase/genetics , Animals , Chromatography, Liquid , DNA , DNA Damage , DNA Repair , DNA-Directed DNA Polymerase/metabolism , Deoxyguanosine/metabolism , Genomics , Humans , Mammals/genetics , Mammals/metabolism
7.
BMC Anesthesiol ; 22(1): 261, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35974310

ABSTRACT

BACKGROUND: The majority of patients may experience atelectasis under general anesthesia, and the Trendelenburg position and pneumoperitoneum can aggravate atelectasis during laparoscopic surgery, which promotes postoperative pulmonary complications. Lung recruitment manoeuvres have been proven to reduce perioperative atelectasis, but it remains controversial which method is optimal. Ultrasonic imaging can be conducive to confirming the effect of lung recruitment manoeuvres. The purpose of our study was to assess the effects of ultrasound-guided alveolar recruitment manoeuvres by ultrasonography on reducing perioperative atelectasis and to check whether the effects of recruitment manoeuvres under ultrasound guidance (visual and semiquantitative) on atelectasis are superior to sustained inflation recruitment manoeuvres (classical and widely used) in laparoscopic gynaecological surgery. METHODS: In this randomized, controlled, double-blinded study, women undergoing laparoscopic gynecological surgery were enrolled. Patients were randomly assigned to receive either lung ultrasound-guided alveolar recruitment manoeuvres (UD group), sustained inflation alveolar recruitment manoeuvres (SI group), or no RMs (C group) using a computer-generated table of random numbers. Lung ultrasonography was performed at four predefined time points. The primary outcome was the difference in lung ultrasound score (LUS) among groups at the end of surgery. RESULTS: Lung ultrasound scores in the UD group were significantly lower than those in both the SI group and the C group immediately after the end of surgery (7.67 ± 1.15 versus 9.70 ± 102, difference, -2.03 [95% confidence interval, -2.77 to -1.29], P < 0.001; 7.67 ± 1.15 versus 11.73 ± 1.96, difference, -4.07 [95% confidence interval, -4.81 to -3.33], P < 0.001;, respectively). The intergroup differences were sustained until 30 min after tracheal extubation (9.33 ± 0.96 versus 11.13 ± 0.97, difference, -1.80 [95% confidence interval, -2.42 to -1.18], P < 0.001; 9.33 ± 0.96 versus 10.77 ± 1.57, difference, -1.43 [95% confidence interval, -2.05 to -0.82], P < 0.001;, respectively). The SI group had a significantly lower LUS than the C group at the end of surgery (9.70 ± 1.02 versus 11.73 ± 1.96, difference, -2.03 [95% confidence interval, -2.77 to -1.29] P < 0.001), but the benefit did not persist 30 min after tracheal extubation. CONCLUSIONS: During general anesthesia, ultrasound-guided recruitment manoeuvres can reduce perioperative aeration loss and improve oxygenation. Furthermore, these effects of ultrasound-guided recruitment manoeuvres on atelectasis are superior to sustained inflation recruitment manoeuvres. TRIAL REGISTRATION: Chictr.org.cn, ChiCTR2100042731, Registered 27 January 2021, www.chictr.org.cn .


Subject(s)
Laparoscopy , Pulmonary Atelectasis , Female , Gynecologic Surgical Procedures/adverse effects , Humans , Laparoscopy/adverse effects , Laparoscopy/methods , Lung/diagnostic imaging , Positive-Pressure Respiration/methods , Postoperative Complications , Pulmonary Atelectasis/diagnostic imaging , Pulmonary Atelectasis/etiology , Pulmonary Atelectasis/prevention & control , Ultrasonography , Ultrasonography, Interventional
8.
Ecotoxicol Environ Saf ; 239: 113632, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35594827

ABSTRACT

BACKGROUND: Exposure to particulate matter (PM) may contribute to lung inflammation and injury. The therapeutic effect of N-acetylcysteine (NAC), a well-known antioxidant, with regards to the prevention and treatment of fine PM (PM2.5)-induced lung injury is poorly understood. This study aimed to determine the effect of PM2.5 on the recruitment of neutrophils and Ly6Chigh monocytes into lung alveoli and the production of proinflammatory proteins by stimulating the generation of reactive oxygen species (ROS), and to investigate the therapeutic effect of NAC on PM2.5-induced lung injury. METHODS: C57BL/6 mice were exposed to a single administration of PM2.5 (200 µg/100 µl/mouse) or phosphate-buffered saline (control) via intratracheal instillation. The mice were injected intratracheally via a microsprayer aerosolizer with NAC (20 or 40 mg/kg) 1 h before PM2.5 instillation and 24 h after PM2.5 instillation. Total protein, VEGF, IL-6, and TNF-α in bronchoalveolar lavage fluid (BALF) were measured. Oxidative stress was evaluated by determining levels of malondialdehyde (MDA) and nitrite in BALF. Flow cytometric analysis was used to identify and quantify neutrophils and Ly6Chigh and Ly6Clow monocyte subsets. RESULTS: Neutrophil count, total protein, and VEGF content in BALF significantly increased after PM2.5 exposure and reached the highest level on day 2. Increased levels of TNF-alpha, IL-6, nitrite, and MDA in BALF were also noted. Flow cytometric analysis showed increased recruitment of neutrophils and Ly6Chigh, but not Ly6Clow monocytes, into lung alveoli. Treatment with NAC via the intratracheal spray significantly attenuated the recruitment of neutrophils and Ly6Chigh monocytes into lung alveoli in PM2.5-treated mice in a dose-dependent manner. Furthermore, NAC significantly attenuated the production of total protein, VEGF, nitrite, and MDA in the mice with PM2.5-induced lung injury in a dose-dependent manner. CONCLUSION: PM2.5-induced lung injury caused by the generation of oxidative stress led to the recruitment of neutrophils and Ly6Chigh monocytes, and production of inflammatory proteins. NAC treatment alleviated PM2.5-induced lung injury by attenuating the ROS-mediated recruitment of neutrophils and Ly6Chigh monocytes and lung inflammation.


Subject(s)
Lung Injury , Pneumonia , Acetylcysteine/pharmacology , Acetylcysteine/therapeutic use , Animals , Interleukin-6/metabolism , Lung , Lung Injury/chemically induced , Lung Injury/drug therapy , Lung Injury/metabolism , Mice , Mice, Inbred C57BL , Monocytes , Neutrophils/metabolism , Nitrites/metabolism , Particulate Matter/adverse effects , Pneumonia/chemically induced , Pneumonia/drug therapy , Pneumonia/metabolism , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism
9.
Learn Mem ; 28(7): 228-238, 2021 07.
Article in English | MEDLINE | ID: mdl-34131054

ABSTRACT

Balancing exploration and anti-predation are fundamental to the fitness and survival of all animal species from early life stages. How these basic survival instincts drive learning remains poorly understood. Here, using a light/dark preference paradigm with well-controlled luminance history and constant visual surrounding in larval zebrafish, we analyzed intra- and intertrial dynamics for two behavioral components, dark avoidance and center avoidance. We uncover that larval zebrafish display short-term learning of dark avoidance with initial sensitization followed by habituation; they also exhibit long-term learning that is sensitive to trial interval length. We further show that such stereotyped learning patterns is stimulus-specific, as they are not observed for center avoidance. Finally, we demonstrate at individual levels that long-term learning is under homeostatic control. Together, our work has established a novel paradigm to understand learning, uncovered sequential sensitization and habituation, and demonstrated stimulus specificity, individuality, as well as dynamicity in learning.


Subject(s)
Avoidance Learning/physiology , Behavior, Animal/physiology , Habituation, Psychophysiologic/physiology , Larva/physiology , Visual Perception/physiology , Zebrafish/physiology , Animals
10.
J Am Chem Soc ; 143(39): 16197-16205, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34555898

ABSTRACT

To cope with unrepaired DNA lesions, cells are equipped with DNA damage tolerance mechanisms, including translesion synthesis (TLS). While TLS polymerases are well documented in facilitating replication across damaged DNA templates, it remains unknown whether TLS polymerases participate in transcriptional bypass of DNA lesions in cells. Herein, we employed the competitive transcription and adduct bypass assay to examine the efficiencies and fidelities of transcription across N2-alkyl-2'-deoxyguanosine (N2-alkyl-dG, alkyl = methyl, ethyl, n-propyl, or n-butyl) lesions in HEK293T cells. We found that N2-alkyl-dG lesions strongly blocked transcription and elicited CC → AA tandem mutations in nascent transcripts, where adenosines were misincorporated opposite the lesions and their adjacent 5' nucleoside. Additionally, genetic ablation of Pol η, but not Pol κ, Pol ι, or Pol ζ, conferred marked diminutions in the transcriptional bypass efficiencies of the N2-alkyl-dG lesions, which is exacerbated by codepletion of Rev1 in Pol η-deficient background. We also observed that the repair of N2-nBu-dG was not pronouncedly affected by genetic depletion of Pol η or Rev1. Hence, our results provided insights into transcriptional perturbations induced by N2-alkyl-dG lesions and expanded the biological functions of TLS DNA polymerases.


Subject(s)
DNA Adducts , DNA-Directed DNA Polymerase/metabolism , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/metabolism , Transcription, Genetic , DNA-Directed DNA Polymerase/genetics , Deoxyguanosine/chemistry , Deoxyguanosine/genetics , HEK293 Cells , Humans , Molecular Structure
11.
Bioorg Med Chem ; 29: 115891, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33278783

ABSTRACT

Ryanodine receptors (RyRs) are important ligand-gated Ca2+ channels; their excessive activation leads to Ca2+ leakage in the sarcoplasmic reticulum that may cause neurological diseases. In this study, three series of novel potent RyR1 inhibitors based on dantrolene and bearing semicarbazone and imidazolyl moieties were designed and synthesized, and their biological activity was evaluated. Using a single-cell calcium imaging method, the calcium overload inhibitory activities of 26 target compounds were tested in the R614C cell line, using dantrolene as a positive control. The preliminary investigation showed that compound 12a suppressed Ca2+ release as evidenced by store overload-induced Ca2+release (SOICR) (31.5 ± 0.1%, 77.2 ± 0.1%, 93.7 ± 0.2%) at 0.1 µM, 3 µM and 10 µM, respectively. Docking simulation results showed that compound 12a could bind at the active site of the RyR1 protein. The Morris water-maze test showed that compound 12a significantly improved the cognitive behavior of AD-model mice. Further studies on the structural optimization of this series of derivatives are currently underway in our laboratory.


Subject(s)
Alzheimer Disease/drug therapy , Calcium Channel Blockers/chemical synthesis , Neuroprotective Agents/chemical synthesis , Ryanodine Receptor Calcium Release Channel/metabolism , Semicarbazones/chemical synthesis , Animals , Calcium Channel Blockers/pharmacology , Calcium Signaling , Dantrolene/chemistry , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Humans , Imidazoles/chemistry , Male , Mice , Molecular Docking Simulation , Morris Water Maze Test , Neuroprotective Agents/pharmacology , Protein Binding , Protein Conformation , Semicarbazones/pharmacology , Single-Cell Analysis , Structure-Activity Relationship
12.
Acta Pharmacol Sin ; 42(12): 2132-2143, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33658706

ABSTRACT

Continuous docetaxel (DTX) treatment of non-small cell lung cancer induces development of drug resistance, but the mechanism is poorly understood. In this study we performed metabolomics analysis to characterize the metabolic patterns of sensitive and resistant A549 non-small cell lung cancer cells (A549/DTX cells). We showed that the sensitive and resistant A549 cells exhibited distinct metabolic phenotypes: the resistant cells were characterized by an altered microenvironment of redox homeostasis with reduced glutathione and elevated reactive oxygen species (ROS). DTX induction reprogrammed the metabolic phenotype of the sensitive cells, which acquired a phenotype similar to that of the resistant cells: it reduced cystine influx, inhibited glutathione biosynthesis, increased ROS and decreased glutathione/glutathione disulfide (GSH/GSSG); the genes involved in glutathione biosynthesis were dramatically depressed. Addition of the ROS-inducing agent Rosup (25, 50 µg/mL) significantly increased P-glycoprotein expression and reduced intracellular DTX in the sensitive A549 cells, which ultimately acquired a phenotype similar to that of the resistant cells. Supplementation of cystine (1.0 mM) significantly increased GSH synthesis, rebalanced the redox homeostasis of A549/DTX cells, and reversed DTX-induced upregulation of P-glycoprotein, and it markedly improved the effects of DTX and inhibited the growth of A549/DTX in vitro and in vivo. These results suggest that microenvironmental redox homeostasis plays a key role in the acquired resistance of A549 cancer cells to DTX. The enhancement of GSH synthesis by supplementary cystine is a promising strategy to reverse the resistance of tumor cells and has potential for translation in the clinic.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Cystine/therapeutic use , Docetaxel/therapeutic use , Homeostasis/drug effects , Lung Neoplasms/drug therapy , A549 Cells , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Antineoplastic Agents/pharmacology , Cystine/pharmacology , Docetaxel/pharmacology , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Glutathione/metabolism , Humans , Male , Mice, Nude , Oxidation-Reduction , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Tumor Microenvironment/drug effects , Up-Regulation/drug effects
13.
Proc Natl Acad Sci U S A ; 115(50): E11661-E11670, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30478051

ABSTRACT

Long noncoding RNAs (lncRNAs) function through a diverse array of mechanisms that are not presently fully understood. Here, we sought to find lncRNAs differentially regulated in cancer cells resistant to either TNF-related apoptosis-inducing ligand (TRAIL) or the Mcl-1 inhibitor UMI-77, agents that act through the extrinsic and intrinsic apoptotic pathways, respectively. This work identified a commonly up-regulated lncRNA, ovarian adenocarcinoma-amplified lncRNA (OVAAL), that conferred apoptotic resistance in multiple cancer types. Analysis of clinical samples revealed OVAAL expression was significantly increased in colorectal cancers and melanoma in comparison to the corresponding normal tissues. Functional investigations showed that OVAAL depletion significantly inhibited cancer cell proliferation and retarded tumor xenograft growth. Mechanically, OVAAL physically interacted with serine/threonine-protein kinase 3 (STK3), which, in turn, enhanced the binding between STK3 and Raf-1. The ternary complex OVAAL/STK3/Raf-1 enhanced the activation of the RAF protooncogene serine/threonine-protein kinase (RAF)/mitogen-activated protein kinase kinase 1 (MEK)/ERK signaling cascade, thus promoting c-Myc-mediated cell proliferation and Mcl-1-mediated cell survival. On the other hand, depletion of OVAAL triggered cellular senescence through polypyrimidine tract-binding protein 1 (PTBP1)-mediated p27 expression, which was regulated by competitive binding between OVAAL and p27 mRNA to PTBP1. Additionally, c-Myc was demonstrated to drive OVAAL transcription, indicating a positive feedback loop between c-Myc and OVAAL in controlling tumor growth. Taken together, these results reveal that OVAAL contributes to the survival of cancer cells through dual mechanisms controlling RAF/MEK/ERK signaling and p27-mediated cell senescence.


Subject(s)
Cellular Senescence/genetics , Cellular Senescence/physiology , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , MAP Kinase Signaling System , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Apoptosis/genetics , Apoptosis/physiology , Cell Line, Tumor , Cell Proliferation/genetics , Cell Proliferation/physiology , Cell Survival/genetics , Cell Survival/physiology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Heterografts , Humans , Melanoma/genetics , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, Nude , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Stability , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-raf/genetics , Proto-Oncogene Proteins c-raf/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Serine-Threonine Kinase 3 , TNF-Related Apoptosis-Inducing Ligand/genetics , TNF-Related Apoptosis-Inducing Ligand/metabolism
14.
Anim Biotechnol ; 32(1): 43-50, 2021 Feb.
Article in English | MEDLINE | ID: mdl-31424321

ABSTRACT

This study was designed to identify the relationship of four genes (GDF9, BMPR-IB, FecB and ESR) polymorphisms in the 3'UTR region with litter size and cashmere performance of Liaoning cashmere goats (LCG, n = 1140). The ESR C463T and T575G loci of LCG were genotyped. The results of correlation analysis showed that five effective single nucleotide polymorphisms (SNPs) loci (C47T, C94T, C299T, C463T and T575G) were found in the four genes. The lambing number of CC and CT genotypic individuals at FecB C94T locus was significantly higher than that of TT genotypic individuals (45.7 and 46.8%, respectively); the lambing number of CC genotypic individuals at ESR C463T locus was significantly higher than that of CT, TT genotypic individuals (9 and 15%, respectively); There was a positive correlation between CC genotype at C463T locus and cashmere fineness. In this study, the relationship between FecB C94T and ESR C463T loci C alleles and lambing number in LCG was preliminarily revealed. These results further confirmed that FecB and ESR genes may be significantly correlated with high fecundity of LCG.


Subject(s)
Goats/genetics , Hair/physiology , Litter Size/genetics , Polymorphism, Single Nucleotide/genetics , Animals , DNA/genetics , Female , Polymerase Chain Reaction
15.
Sensors (Basel) ; 21(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200379

ABSTRACT

In this study, an explicit track continuity algorithm is proposed for multitarget tracking (MTT) based on the Gaussian mixture (GM) implementation of the probability hypothesis density (PHD) filter. Trajectory maintenance and multitarget state extraction in the GM-PHD filter have not been effectively integrated to date. To address this problem, we propose an improved GM-PHD filter. In this approach, the Gaussian components are classified and labeled, and multitarget state extraction is converted into multiple single-state extractions. This provides the identity label of the individual target and can shield against the negative effects of clutter in the prior density region on the estimates, thus realizing the integration of trajectory maintenance with state extraction in the GM-PHD filter. As no additional associated procedures are required, the overall real-time performance of the proposed filter is similar to or slightly lower than that of the basic GM-PHD filter. The results of numerical experiments demonstrate that the proposed approach can achieve explicit track continuity.


Subject(s)
Algorithms , Normal Distribution
16.
J Neurogenet ; 33(4): 199-208, 2019 12.
Article in English | MEDLINE | ID: mdl-31544554

ABSTRACT

Anxiety is a fear-like response to stimuli perceived to be threatening. Excessive or uncontrollable anxiety is a debilitating psychiatric disorder which affects many people throughout their lifetime. In unravelling the complex genetic and environmental regulations of anxiety-like phenotypes, models measuring the natural dark avoidance of larval zebrafish have shed light on the individual variation and heritability of this anxiety-related trait. Using the light/dark choice paradigm and selective breeding, this study aims to validate previous findings of the variable (VDA) and strong dark aversion (SDA) heritability in AB-WT larval zebrafish using the outbred zebrafish strain EK, which offers more genetic diversity to aid in future molecular mapping efforts. 190 larvae (6 days post fertilization [dpf] and 7 dpf) were tested across four trials and divided into variable (VDA), medium (MDA) and strong (SDA) dark aversion for further in-crosses. VDA and MDA larvae became more explorative with time, whereas SDA larvae rarely left the preferred light zone. The SDA and VDA in-crosses significantly increased the respective phenotypes in the second generation of larvae, whereas VDA × MDA inter-crosses did not. For the second-generation SDA cohort, dark aversion correlated with increased thigmotaxis, which reinforces SDA as an anxiety-like phenotype. Our finding that the dark aversion trait and SDA and VDA phenotypes are heritable in an outbred zebrafish population lays an important foundation for future studies of genetic underpinnings using whole-genome mapping methods. This conserved fear/anxiety-like response in a highly accessible model organism also allows for further pharmacological and behavioral studies to elucidate the etiology of anxiety and the search for novel therapeutics for anxiety disorders.


Subject(s)
Anxiety/genetics , Behavior, Animal/physiology , Choice Behavior/physiology , Zebrafish/physiology , Animals , Larva/physiology , Motor Activity/genetics , Phenotype , Zebrafish/genetics
17.
Chem Res Toxicol ; 32(4): 708-717, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30714728

ABSTRACT

Quantitative measurement of DNA adducts in carcinogen-exposed cells provides the information about the frequency of formation and the rate of removal of DNA lesions in vivo, which yields insights into the initial events of mutagenesis. Metabolic activation of tobacco-specific nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its reduction product 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), leads to pyridyloxobutylation and pyridylhydroxybutylation of DNA. In this study, we employed a highly robust nanoflow liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry (nLC-nESI-MS/MS) coupled with the isotope-dilution method for simultaneous quantification of O6-[4-(3-pyridyl)-4-hydroxylbut-1-yl]-2'-deoxyguanosine ( O6-PHBdG) and O2- and O4-[4-(3-pyridyl)-4-hydroxylbut-1-yl]-thymidine ( O2-PHBdT and O4-PHBdT). Cultured mammalian cells were exposed to a model pyridylhydroxybutylating agent, 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanol (NNALOAc), followed by DNA extraction, enzymatic digestion, and sample enrichment prior to nLC-nESI-MS/MS quantification. Our results demonstrate, for the first time, that O4-PHBdT is quantifiable in cellular DNA and naked DNA upon NNALOAc exposure. We also show that nucleotide excision repair (NER) machinery may counteract the formation of O2-PHBdT and O4-PHBdT, and O6-alkylguanine DNA alkyltransferase (AGT) may be responsible for the repair of O6-PHBdG and O4-PHBdT in mammalian cells. Together, our study provides new knowledge about the occurrence and repair of NNAL-induced DNA lesions in mammalian cells.


Subject(s)
DNA Adducts/analysis , DNA/drug effects , Nitrosamines/pharmacology , Animals , Cattle , Cells, Cultured , DNA/isolation & purification , DNA/metabolism , DNA Repair , Esterases/metabolism , Liver/enzymology , Molecular Structure , Nitrosamines/chemistry , Swine
18.
Nurs Crit Care ; 24(5): 313-319, 2019 09.
Article in English | MEDLINE | ID: mdl-30942526

ABSTRACT

BACKGROUND: A massage may relax muscles, improve blood circulation and reduce pain and anxiety while also improving sleep quality by increasing comfort. However, there is little research on whether a back massage improves sleep quality in intensive care unit (ICU) patients. AIMS AND OBJECTIVES: This study examined the effects of a back massage on improving vital signs, sleep quality, anxiety and depression among ICU patients. DESIGN: Adopting a quasi-experimental design, convenience sampling was used to recruit ICU patients from a medical centre in Southern Taiwan. The experimental group received back massages for three consecutive days (n = 30), while controls received usual care (n = 30). METHODS: The Verran and Snyder-Halpern Scale and the Hospital Anxiety and Depression Scale were used, and subjective and objective sleep time (wrist actigraphy and sleep duration from nurse observations) was recorded. The effect of the intervention was examined using a generalized estimating equation model with a robust standard error and an exchangeable working correlation matrix adjusting for time. RESULTS: The results show that subjective sleep quality scores in ICU patients were low. Mean observed sleep time (measured by nurses) was 3·9 h, but mean sleep time measured using wrist actigraphy was 5·9 h. Back massages improved breathing in patients, increased sleep quality reflected by both subjective and objective data and were associated with a significant change in anxiety. CONCLUSIONS: These findings suggest that a 10-min back massage can improve sleep quality, sleep duration, breathing and anxiety in ICU patients. RELEVANCE TO CLINICAL PRACTICE: The implementation of a back massage shows positive improvements in the sleep quality of ICU patients. The training and theory of massage interventions should be further applied when developing courses in critical care nursing.


Subject(s)
Anxiety/prevention & control , Critical Care/methods , Massage/methods , Pain/prevention & control , Sleep Initiation and Maintenance Disorders/prevention & control , Sleep , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Taiwan
19.
Mol Carcinog ; 57(2): 284-294, 2018 02.
Article in English | MEDLINE | ID: mdl-29068469

ABSTRACT

Past studies have shown that mutant KRAS colon cancer cells are susceptible to apoptosis induced by the HSP90 inhibitor AUY922. Nevertheless, intrinsic and acquired resistance remains an obstacle for the potential application of the inhibitor in the treatment of the disease. Here we report that Mcl-1 is important for survival of colon cancer cells in the presence of AUY922. Mcl-1 was upregulated in mutant KRAS colon cancer cells selected for resistance to AUY922-induced apoptosis. This was due to its increased stability mediated by Bcl-2-associated athanogene domain 3 (BAG3), which was also increased in resistant colon cancer cells by heat shock factor 1 (HSF1) as a result of chronic endoplasmic reticulum (ER) stress. Functional investigations demonstrated that inhibition of Mcl-1, BAG3, or HSF1 triggered apoptosis in resistant colon cancer cells, and rendered AUY922-naïve colon cancer cells more sensitive to the inhibitor. Together, these results identify that the HSF1-BAG3-Mcl-1 signal axis is critical for protection of mutant KRAS colon cancer cells from AUY922-induced apoptosis, with potential implications for targeting HSF1/BAG3/Mcl-1 to improve the efficacy of AUY922 in the treatment of colon cancer.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Isoxazoles/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Resorcinols/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Drug Resistance, Neoplasm , Endoplasmic Reticulum Stress/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Heat Shock Transcription Factors/metabolism , Humans , Proto-Oncogene Proteins c-bcl-2/metabolism
20.
Nat Chem Biol ; 12(3): 159-66, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26751515

ABSTRACT

Rhythmicity is prevalent in the cortical dynamics of diverse single and multicellular systems. Current models of cortical oscillations focus primarily on cytoskeleton-based feedbacks, but information on signals upstream of the actin cytoskeleton is limited. In addition, inhibitory mechanisms--especially local inhibitory mechanisms, which ensure proper spatial and kinetic controls of activation--are not well understood. Here, we identified two phosphoinositide phosphatases, synaptojanin 2 and SHIP1, that function in periodic traveling waves of rat basophilic leukemia (RBL) mast cells. The local, phase-shifted activation of lipid phosphatases generates sequential waves of phosphoinositides. By acutely perturbing phosphoinositide composition using optogenetic methods, we showed that pulses of PtdIns(4,5)P2 regulate the amplitude of cyclic membrane waves while PtdIns(3,4)P2 sets the frequency. Collectively, these data suggest that the spatiotemporal dynamics of lipid metabolism have a key role in governing cortical oscillations and reveal how phosphatidylinositol 3-kinases (PI3K) activity could be frequency-encoded by a phosphatase-dependent inhibitory reaction.


Subject(s)
Cerebral Cortex/metabolism , Cerebral Cortex/physiology , Phosphatidylinositols/metabolism , Phosphatidylinositols/physiology , Actins/genetics , Animals , Cell Line, Tumor , Cytoskeleton/genetics , Inositol Polyphosphate 5-Phosphatases , Kinetics , Leukemia, Basophilic, Acute/pathology , Lipid Metabolism/physiology , Mast Cells/metabolism , Nerve Tissue Proteins/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Phosphatidylinositol Phosphates/metabolism , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL