Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 199
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Brief Bioinform ; 24(2)2023 03 19.
Article in English | MEDLINE | ID: mdl-36754843

ABSTRACT

Scaffold proteins drive liquid-liquid phase separation (LLPS) to form biomolecular condensates and organize various biochemical reactions in cells. Dysregulation of scaffolds can lead to aberrant condensate assembly and various complex diseases. However, bioinformatics predictors dedicated to scaffolds are still lacking and their development suffers from an extreme imbalance between limited experimentally identified scaffolds and unlabeled candidates. Here, using the joint distribution of hybrid multimodal features, we implemented a positive unlabeled (PU) learning-based framework named PULPS that combined ProbTagging and penalty logistic regression (PLR) to profile the propensity of scaffolds. PULPS achieved the best AUC of 0.8353 and showed an area under the lift curve (AUL) of 0.8339 as an estimation of true performance. Upon reviewing recent experimentally verified scaffolds, we performed a partial recovery with 2.85% increase in AUL from 0.8339 to 0.8577. In comparison, PULPS showed a 45.7% improvement in AUL compared with PLR, whereas 8.2% superiority over other existing tools. Our study first proved that PU learning is more suitable for scaffold prediction and demonstrated the widespread existence of phase separation states. This profile also uncovered potential scaffolds that co-drive LLPS in the human proteome and generated candidates for further experiments. PULPS is free for academic research at http://pulps.zbiolab.cn.


Subject(s)
Cell Physiological Phenomena , Proteome , Humans
2.
FASEB J ; 38(5): e23553, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38470398

ABSTRACT

Polycystic ovary syndrome (PCOS) is a common and complex endocrine disorder in reproductive-aged women that frequently leads to infertility due to poor oocyte quality. In this study, we identified a new active peptide (advanced glycation end products receptors RAGE344-355 ) from PCOS follicular fluid using mass spectrometry. We found that supplementing PCOS-like mouse oocytes with RAGE344-355 attenuated both meiotic defects and oxidative stress levels, ultimately preventing developmental defects. Additionally, our results suggest that RAGE344-355 may interact with eEF1a1 to mitigate oxidative meiotic defects in PCOS-like mouse oocytes. These findings highlight the potential for further clinical development of RAGE344-355 as a potent supplement and therapeutic option for women with PCOS. This research addresses an important clinical problem and offers promising opportunities for improving oocyte quality in PCOS patients.


Subject(s)
Polycystic Ovary Syndrome , Humans , Female , Animals , Mice , Adult , Oocytes , Dietary Supplements , Oxidative Stress , Peptides
3.
Mol Ecol ; 33(13): e17416, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801181

ABSTRACT

Methanogenic and methanotrophic microbes together determine the net methane flux from rice fields. Despite much research on them as separate communities, there has been little study of combined community patterns, and how these vary between the rhizoplane (root surface), rhizosphere (soil surrounding the root) and bulk soil around rice plants, especially at larger spatial scale. We collected samples from 32 geographically scattered rice fields in east central China, amplicon targeting the mcrA gene for methanogenesis and pmoA gene for methanotrophy by using high-throughput sequencing. Distinct communities of both methanogens and methanotrophs occurred in each of the three compartments, and predominantly positive links were found between methanogens and methanotrophs in all compartments indicating cross-feeding or consortia relationships. Methanogens were acting as the network hub in the bulk soil, and methanotrophs in rhizoplane. Network complexity and stability was greater in the rhizosphere than rhizoplane and bulk soil, with no network hubs detected, suggesting the strongest effect of homeostatic influence by plant occurred in the rhizosphere. The proportion of determinism (homogeneous selection) and distance-decay relation (DDR) in rhizoplane was consistently lower than that in the rhizosphere for both communities, indicating weaker phylogenetic clustering in rice root surface. Our results have provided a better understanding of CH4 oxidation and emission in rice paddy fields and future agriculture management could take into consideration of the subtle variation among different soil compartments and interactions within methanogenic and methanotrophic communities.


Subject(s)
Methane , Oryza , Plant Roots , Rhizosphere , Soil Microbiology , Oryza/microbiology , Methane/metabolism , China , Plant Roots/microbiology , Soil/chemistry , Phylogeny , High-Throughput Nucleotide Sequencing
4.
Toxicol Appl Pharmacol ; 483: 116827, 2024 02.
Article in English | MEDLINE | ID: mdl-38246290

ABSTRACT

With the increasing incidence of chronic kidney disease (CKD), the development of safe and effective anti-renal fibrosis drugs is particularly urgent. Recently, Baicalin has been considered to have a renal protective effect, but its bioavailability is too low. Therefore, we synthesized baicalin-2-ethoxyethyl ester (BAE) by esterification of baicalin. We hope that this experiment will demonstrate the anti-renal fibrosis effect of BAE and explain its molecular mechanism. In this study, the chronic kidney injury model of SD rats was established by 5/6 nephrectomy, and BAE was given for 28 days. The results showed that after BAE treatment, the serum creatinine and urea nitrogen levels decreased significantly, and the pathological changes in kidneys were improved. In addition, RNA-seq analysis showed that the mechanism of BAE in relieving renal fibrosis was related to the ECM receptor, PI3K/AKT signaling pathway, and inflammatory reaction. The western blotting analysis confirmed that BAE could inhibit the expression of α-SMA, TGF-ß1, p-PI3K, p-AKT, p-IκBα, and NF-κB p65. We found that BAE can inhibit the inflammatory reaction and promote the degradation of the extracellular matrix by inhibiting the activation of the PI3K/AKT/NF-κB pathway, thus alleviating the symptoms of renal fibrosis in 5/6Nx rats, which revealed BAE was a potential compound to relieve renal fibrosis effect.


Subject(s)
Flavonoids , NF-kappa B , Renal Insufficiency, Chronic , Rats , Animals , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Esters/pharmacology , Rats, Sprague-Dawley , Signal Transduction , Fibrosis , Inflammation
5.
Cancer Cell Int ; 24(1): 114, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528618

ABSTRACT

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is one of the leading causes of digestive system tumor related death in the world. Unfortunately, effective chemopreventive agent is lack for patients with ESCC in clinical practice, which leads to the extremely high mortality rate. METHODS: A library of prescribed drugs was screened for finding critical anti-tumor properties in ESCC cells. The phosphoproteomics, kinase array, pulldown assay and drug affinity responsive target stabilization assay (DARTS) were applied to explore mechanisms and searched for synergistic targets. Established models of PDX in mice were used to determine the therapeutic effect of domperidone. RESULTS: After screening a library of prescribed drugs, we discovered that domperidone has anti-tumor properties. Domperidone, acting as a gastroprokinetic agent, has been widely used in clinic for gastrointestinal motility disorders. Despite limited research, there are indications that domperidone may have anti-tumor properties. In this study, we determined that domperidone significantly inhibited ESCC proliferation in vitro and in vivo. We employed phosphoproteomics to reveal p-ERK, and p-SMAD3 down-regulation upon domperidone treatment. Then, the results of kinase assay and pulldown assay further validated that domperidone directly combined with MEK1/2 and CDK4, leading to the inhibition of their kinase activity. Furthermore, our results revealed that MEK/ERK and CDK4/SMAD3 signal pathway were major pathways in domperidone against ESCC. CONCLUSION: Collectively, these findings suggest that domperidone serves as an effective "multi-target" inhibitor of MEK1/2 and CDK4, offering potential benefits for the chemoprevention of ESCC.

6.
Cell Mol Biol Lett ; 29(1): 23, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317138

ABSTRACT

For decades, lactate has been considered a byproduct of glycolysis. The lactate shuttle hypothesis shifted the lactate paradigm, demonstrating that lactate not only plays important roles in cellular metabolism but also cellular communications, which can transcend compartment barriers and can occur within and among different cells, tissues and organs. Recently, the discovery that lactate can induce a novel post-translational modification, named lysine lactylation (Kla), brings forth a new avenue to study nonmetabolic functions for lactate, which has inspired a 'gold rush' of academic and commercial interest. Zhang et al. first showed that Kla is manifested in histones as epigenetic marks, and then mounting evidences demonstrated that Kla also occurs in diverse non-histone proteins. The widespread Kla faithfully orchestrates numerous biological processes, such as transcription, metabolism and inflammatory responses. Notably, dysregulation of Kla touches a myriad of pathological processes. In this review, we comprehensively reviewed and curated the existing literature to retrieve the new identified Kla sites on both histones and non-histone proteins and summarized recent major advances toward its regulatory mechanism. We also thoroughly investigated the function and underlying signaling pathway of Kla and comprehensively summarize how Kla regulates various biological processes in normal physiological states. In addition, we also further highlight the effects of Kla in the development of human diseases including inflammation response, tumorigenesis, cardiovascular and nervous system diseases and other complex diseases, which might potentially contribute to deeply understanding and interpreting the mechanism of its pathogenicity.


Subject(s)
Histones , Lactic Acid , Humans , Lysine , Carcinogenesis , Epigenomics
7.
Article in English | MEDLINE | ID: mdl-38607197

ABSTRACT

Objective: The objective of this study was to assess the association between the dietary inflammatory index (DII) and blood glucose changes in patients diagnosed with pre-diabetes mellitus (Pre-DM). Methods: The study participants were 111 patients diagnosed with Pre-DM at Taizhou People's Hospital of Jiangsu Province Hospital between January 2019 and December 2021. Patients' initial BG data were collected and recorded. A dietary assessment was performed on all Pre-DM patients, and the DII of each participant was calculated to explore the relationship between DII and BG changes. DII was calculated based on the relation between food and interleukin serum IL-1ß, IL-4, IL-6, IL-10 and CRP. Results: The fasting (FBG), 1-hour postprandial (1hPBG) and 2-hour postprandial blood glucose (2hPBG) levels were (5.43±0.88) mmol/L, (10.67±3.05) mmol/L, and (8.65±2.89) mmol/L, respectively, with statistical significance among them (n=111, F=222.987, P < .001). Multivariate linear regression models were established with FBG, 1hPBG, 2hPBG, and BG changes (2hPBG-FBG and 1hPBG-FBG) as dependent variables. In Model 5, the coefficient (B value) of DII and its 95% (CI) were 0.324 (0.018~0.658) (P = .031), indicating a positive correlation between DII and BG concentration that the change of BG concentration increased by 0.456 mmol/L for every 1 unit increase in DII. Conclusions: DII is a risk factor for Pre-DM patients, so attention should be paid to the content of inflammatory components in the diet, and more intake of anti-inflammatory components is helpful to prevent the occurrence of diabetes further.

8.
Mikrochim Acta ; 191(6): 338, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780645

ABSTRACT

A novel electrochemical sensor, MIP/Cu-MOF/rGO/AuNPs/GCE, was developed by depositing gold nanoparticles, coating Cu-MOF/GO on the surface of glassy carbon electrode (GCE) before electroreducing graphene oxide (GO) to rGO and covering molecularly imprinted membrane by electropolymerization for highly sensitive detection of electroneutral organophosphorus pesticide residues in agricultural product. Cyclic voltammetry, differential pulse voltametry, scanning electron microscopy, energy-dispersive spectroscopy, and atomic force microscopy were used to characterize the imprinted sensor. Several key factors such as chitosan concentration, suspension volume, pH of polymerization solution, and polymerization scanning rate during preparation of the imprinted sensor were optimized in detail. When electroneutral phosmet was used as a template, the linear range of MIP/Cu-MOF/rGO/AuNPs/GCE for detecting phosmet was 1.00 × 10-14-5.00 × 10-7 mol/L with the limit of detection of 7.20 × 10-15 mol/L at working potentials of - 0.2 to 0.6 V. The selectivity, reproducibility, and repeatability of MIP/Cu-MOF/rGO/AuNPs/GCE were all acceptable. The recoveries of this method for determining phosmet in real samples ranged from 94.2 to 106.5%. The MIP/Cu-MOF/rGO/AuNPs/GCE sensor could be applied to detect electroneutral pesticide residues in organisms and agricultural products.

9.
Brief Bioinform ; 22(2): 1836-1847, 2021 03 22.
Article in English | MEDLINE | ID: mdl-32248222

ABSTRACT

As an important reversible lipid modification, S-palmitoylation mainly occurs at specific cysteine residues in proteins, participates in regulating various biological processes and is associated with human diseases. Besides experimental assays, computational prediction of S-palmitoylation sites can efficiently generate helpful candidates for further experimental consideration. Here, we reviewed the current progress in the development of S-palmitoylation site predictors, as well as training data sets, informative features and algorithms used in these tools. Then, we compiled a benchmark data set containing 3098 known S-palmitoylation sites identified from small- or large-scale experiments, and developed a new method named data quality discrimination (DQD) to distinguish data quality weights (DQWs) between the two types of the sites. Besides DQD and our previous methods, we encoded sequence similarity values into images, constructed a deep learning framework of convolutional neural networks (CNNs) and developed a novel algorithm of graphic presentation system (GPS) 6.0. We further integrated nine additional types of sequence-based and structural features, implemented parallel CNNs (pCNNs) and designed a new predictor called GPS-Palm. Compared with other existing tools, GPS-Palm showed a >31.3% improvement of the area under the curve (AUC) value (0.855 versus 0.651) for general prediction of S-palmitoylation sites. We also produced two species-specific predictors, with corresponding AUC values of 0.900 and 0.897 for predicting human- and mouse-specific sites, respectively. GPS-Palm is free for academic research at http://gpspalm.biocuckoo.cn/.


Subject(s)
Computer Graphics , Deep Learning , Lipoylation , Proteins/chemistry , Algorithms , Animals , Computational Biology/methods , Humans , Mice , Software
10.
J Nanobiotechnology ; 21(1): 259, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37550715

ABSTRACT

Autogenous bone grafting has long been considered the gold standard for treating critical bone defects. However, its use is plagued by numerous drawbacks, such as limited supply, donor site morbidity, and restricted use for giant-sized defects. For this reason, there is an increasing need for effective bone substitutes to treat these defects. Mollusk nacre is a natural structure with outstanding mechanical property due to its notable "brick-and-mortar" architecture. Inspired by the nacre architecture, our team designed and fabricated a nacre-mimetic cerium-doped layered nano-hydroxyapatite/chitosan layered composite scaffold (CeHA/CS). Hydroxyapatite can provide a certain strength to the material like a brick. And as a polymer material, chitosan can slow down the force when the material is impacted, like an adhesive. As seen in natural nacre, the combination of these inorganic and organic components results in remarkable tensile strength and fracture toughness. Cerium ions have been demonstrated exceptional anti-osteoclastogenesis capabilities. Our scaffold featured a distinct layered HA/CS composite structure with intervals ranging from 50 to 200 µm, which provided a conducive environment for human bone marrow mesenchymal stem cell (hBMSC) adhesion and proliferation, allowing for in situ growth of newly formed bone tissue. In vitro, Western-blot and qPCR analyses showed that the CeHA/CS layered composite scaffolds significantly promoted the osteogenic process by upregulating the expressions of osteogenic-related genes such as RUNX2, OCN, and COL1, while inhibiting osteoclast differentiation, as indicated by reduced TRAP-positive osteoclasts and decreased bone resorption. In vivo, calvarial defects in rats demonstrated that the layered CeHA/CS scaffolds significantly accelerated bone regeneration at the defect site, and immunofluorescence indicated a lowered RANKL/OPG ratio. Overall, our results demonstrate that CeHA/CS scaffolds offer a promising platform for bone regeneration in critical defect management, as they promote osteogenesis and inhibit osteoclast activation.


Subject(s)
Chitosan , Nacre , Rats , Humans , Animals , Chitosan/pharmacology , Chitosan/chemistry , Durapatite/pharmacology , Durapatite/chemistry , Tissue Scaffolds/chemistry , Nacre/pharmacology , Bone Regeneration , Osteogenesis , Signal Transduction , Cell Differentiation , Tissue Engineering/methods
11.
Genomics ; 114(2): 110276, 2022 03.
Article in English | MEDLINE | ID: mdl-35104610

ABSTRACT

Although large-scale and accurate identification of cis-regulatory elements on pig protein-coding and long non-coding genes has been reported, similar study on pig miRNAs is still lacking. Here, we systematically characterized the cis-regulatory elements of pig miRNAs in muscle and fat by adopting miRNAomes, ChIP-seq, ATAC-seq, RNA-seq and Hi-C data. In total, the cis-regulatory elements of 257 (85.95%) expressed miRNAs including 226 known and 31 novel miRNAs were identified. Especially, the miRNAs associated with super-enhancers, active promoters, and "A" compartment were significantly higher than those associated by typical enhancers, prompters without H3K27ac, and "B" compartment, respectively. The tissue specific transcription factors were the primary determination of core miRNA expression pattern in muscle and fat. Moreover, the miRNA promoters are more evolutionarily conserved than miRNA enhancers, like other type genes. Our study adds additional important information to existing pig epigenetic data and provides essential resource for future in-depth investigation of pig epigenetics.


Subject(s)
Epigenomics , MicroRNAs , Animals , Chromatin Immunoprecipitation Sequencing , MicroRNAs/genetics , Muscles , Regulatory Sequences, Nucleic Acid , Swine/genetics
12.
Molecules ; 28(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37375271

ABSTRACT

Four compounds (1, 5, 7, and 8) were first isolated from the genus Belamcanda Adans. nom. conserv., and six known compounds (2-4, 6, 9, and 10) were isolated from the rhizome of Belamcanda chinensis (L.) DC. Their structures were confirmed by spectroscopic data. Herein, compounds 1-10 were rhapontigenin, trans-resveratrol, 5,7,4'-trihydroxy-6,3',5'-trimethoxy-isoflavone, irisflorentin, 6-hydroxybiochannin A, iridin S, pinoresinol, 31-norsysloartanol, isoiridogermanal, and iristectorene B, respectively. All compounds were evaluated for their antiproliferative effects against five tumor cell lines (BT549, 4T1, MCF7, MDA-MB-231, and MDA-MB-468). Among them, compound 9 (an iridal-type triterpenoid) showed the highest activity against 4T1 and MDA-MB-468 cells. Further studies displayed that compound 9 inhibited cell metastasis, induced cells cycle arrest in the G1 phase, exhibited significant mitochondrial damage in 4T1 and MDA-MB-468 cells including excess reactive oxygen species, decreased mitochondrial membrane potential, and induced 4T1 and MDA-MB-468 cell apoptosis for the first time. In summary, these findings demonstrate that compound 9 exerts promising potential for triple-negative breast cancer treatment and deserves further evaluation.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Iris Plant , Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Cell Cycle Checkpoints , Apoptosis , Cell Line, Tumor , Cell Proliferation
13.
BMC Genomics ; 23(1): 26, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34991478

ABSTRACT

BACKGROUND: Valgus-varus deformity (VVD) is a lateral or middle deviation of the tibiotarsus or tarsometatarsus, which is associated with compromised growth, worse bone quality and abnormal changes in serum indicators in broilers. To investigate the genetic basis of VVD, a genome wide association study (GWAS) was performed to identify candidate genes and pathways that are responsible for VVD leg disease, serum indicators and growth performance in broilers. RESULTS: In total, VVD phenotype, seven serum indicators and three growth traits were measured for 126 VVD broilers (case group) and 122 sound broilers (control group) based on a high throughput genome wide genotyping-by-sequencing (GBS) method. After quality control 233 samples (113 sound broilers and 120 VVD birds) and 256,599 single nucleotide polymorphisms (SNPs) markers were used for further analysis. As a result, a total of 5 SNPs were detected suggestively significantly associated with VVD and 70 candidate genes were identified that included or adjacent to these significant SNPs. In addition, 43 SNPs located on Chr24 (0.22 Mb - 1.79 Mb) were genome-wide significantly associated with serum alkaline phosphatase (ALP) and 38 candidate genes were identified. Functional enrichment analysis showed that these genes are involved in two Gene Ontology (GO) terms related to bone development (cartilage development and cartilage condensation) and two pathways related to skeletal development (Toll-like receptor signaling pathway and p53 signaling pathway). BARX2 (BARX homeobox 2) and Panx3 (Pannexin 3) related to skeleton diseases and bone quality were obtained according to functional analysis. According to the integration of GWAS with transcriptome analysis, HYLS1 (HYLS1 centriolar and ciliogenesis associated) was an important susceptibility gene. CONCLUSIONS: The results provide some reference for understanding the relationship between metabolic mechanism of ALP and pathogenesis of VVD, which will provide a theoretical basis for disease-resistant breeding of chicken leg soundness.


Subject(s)
Chickens , Genome-Wide Association Study , Animals , Chickens/genetics , Gene Expression Profiling , Phenotype , Polymorphism, Single Nucleotide
14.
Environ Microbiol ; 24(12): 6200-6219, 2022 12.
Article in English | MEDLINE | ID: mdl-36076153

ABSTRACT

The rice rhizosphere microbiota is crucial for crop yields and nutrient use efficiency. However, little is known about how co-occurrence patterns, keystone taxa and functional gene assemblages relate to soil pH in the rice rhizosphere soils. Using shotgun metagenome analysis, the rice rhizosphere microbiome was investigated across 28 rice fields in east-central China. At higher pH sites, the taxonomic co-occurrence network of rhizosphere soils was more complex and compact, as defined by higher average degree, graph density and complexity. Network stability was greatest at medium pH (6.5 < pH < 7.5), followed by high pH (7.5 < pH). Keystone taxa were more abundant at higher pH and correlated significantly with key ecosystem functions. Overall functional genes involved in C, N, P and S cycling were at a higher relative abundance in higher pH rhizosphere soils, excepting C degradation genes (e.g. key genes involved in starch, cellulose, chitin and lignin degradation). Our results suggest that the rice rhizosphere soil microbial network is more complex and stable at higher pH, possibly indicating increased efficiency of nutrient cycling. These observations may indicate routes towards more efficient soil management and understanding of the potential effects of soil acidification on the rice rhizosphere system.


Subject(s)
Microbiota , Oryza , Rhizosphere , Soil Microbiology , Microbiota/genetics , Soil , Nutrients , Hydrogen-Ion Concentration
15.
Nucleic Acids Res ; 48(D1): D288-D295, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31691822

ABSTRACT

Here, we presented an integrative database named DrLLPS (http://llps.biocuckoo.cn/) for proteins involved in liquid-liquid phase separation (LLPS), which is a ubiquitous and crucial mechanism for spatiotemporal organization of various biochemical reactions, by creating membraneless organelles (MLOs) in eukaryotic cells. From the literature, we manually collected 150 scaffold proteins that are drivers of LLPS, 987 regulators that contribute in modulating LLPS, and 8148 potential client proteins that might be dispensable for the formation of MLOs, which were then categorized into 40 biomolecular condensates. We searched potential orthologs of these known proteins, and in total DrLLPS contained 437 887 known and potential LLPS-associated proteins in 164 eukaryotes. Furthermore, we carefully annotated LLPS-associated proteins in eight model organisms, by using the knowledge integrated from 110 widely used resources that covered 16 aspects, including protein disordered regions, domain annotations, post-translational modifications (PTMs), genetic variations, cancer mutations, molecular interactions, disease-associated information, drug-target relations, physicochemical property, protein functional annotations, protein expressions/proteomics, protein 3D structures, subcellular localizations, mRNA expressions, DNA & RNA elements, and DNA methylations. We anticipate DrLLPS can serve as a helpful resource for further analysis of LLPS.


Subject(s)
Databases, Factual , Eukaryota , Proteins/chemistry , Proteins/metabolism , Genome , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Organelles , Protein Processing, Post-Translational , User-Computer Interface
16.
Int J Mol Sci ; 23(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36361874

ABSTRACT

To produce antioxidant substances from agricultural waste Camellia spp. fruit shells before their further utilization, gallic acid from five kinds of Camellia spp. fruit shells was separated on specific recognition by deep eutectic solvent molecularly imprinted polymers (DES@MIPs), which were prepared by bulk polymerization using gallic acid as the template and deep eutectic solvents (α-methylacrylic acid and choline chloride) as functional monomers. The optimized DES@MIPs were characterized by scanning electron microscopy, particle size analysis, nitrogen sorption porosimetry, elemental analysis, Fourier transform infrared spectroscopy, and thermal gravimetric analysis. The adsorptive behavior of gallic acid on DES@MIPs was also investigated. The results indicated that DES@MIPs were successfully prepared as mesoporous materials with average pore diameter of 9.65 nm and total pore volume of 0.315 cm3 g-1, and the adsorption behavior was multilayer adsorption and pseudo-second-order kinetics with the saturation adsorptive capacity of gallic acid reaching 0.7110 mmol g-1. Although the content of gallic acid in five fruit shells was quite different, the purification recovery of gallic acid was high, ranging from 87.85-96.75% with a purity over 80%. Thus, the purification of gallic acid from Camellia spp. fruit shells could be realized feasibly using DES@MIPs with favorable economic and environmental benefits.


Subject(s)
Camellia , Molecular Imprinting , Molecular Imprinting/methods , Molecularly Imprinted Polymers , Gallic Acid , Fruit , Polymers/chemistry , Solvents/chemistry , Adsorption
17.
Pak J Med Sci ; 38(1): 227-231, 2022.
Article in English | MEDLINE | ID: mdl-35035430

ABSTRACT

OBJECTIVES: To investigate the positive detection rate and clinical application value of anti-parietal cell antibody (PCA), anti-neutrophil cytoplasmic antibody (ANCA), anti-Saccharomyces cerevisiae antibody (ASCA), anti-gliadin antibody (AGA) and anti-nuclear antibody (ANA) in patients visiting the Department of Gastroenterology. METHODS: From January 2015 to June 2018, 1,083 patients receiving detection of PCA and other autoantibodies were selected from the Department of Gastroenterology of Baoding First Central Hospital. The positive detection rate of autoantibodies was statistically analyzed. The enumeration data were expressed as rate or constituent ratio, and the rates were compared between groups using the x2 test. RESULTS: Among the 1,083 patients, the positive detection rate of ANA, ASCA, AGA, PCA and ANCA was 33.52%, 16.71%, 15.51%, 13.66% and 7.66%, respectively. The total positive detection rate was 62.8% (n = 680). CONCLUSION: The population with abdominal distension, chronic abdominal pain, diarrhea and other digestive system symptoms should be timely treated with combined detection of PCA, ANCA, ASCA, AGA and ANA, which is of important clinical application value for early diagnosis of gastrointestinal diseases and prevention of missed diagnosis and misdiagnosis.

18.
Nanotechnology ; 32(19): 195701, 2021 May 07.
Article in English | MEDLINE | ID: mdl-33513589

ABSTRACT

The MXene combining high surface area, prominent biocompatibility, and wide near infrared (NIR) absorption has been recognized as one of the most promising materials for tumor therapy. The application of MXene in tumor therapy is negatively affected by the current design methods lack the control of size distribution and the great tendency to agglomerate as well as poor photodynamic therapy. To solve the above problems, we report a facile strategy to process Ti3C2 nanosheets into three-dimensional (3D) structure with honeycomb structure and anti-aggregation properties for synergistic therapy of chemotherapy, photothermal and photodynamic therapy. The 3D MXene is synthesized by spray drying, in which the MXene surface is oxidized to TiO2. The microspheres present prominent NIR light trigger photothermal effect and excellent NIR light photostability, which respond in an on-off manner. Moreover, the microspheres exhibit outstanding drug-loading capability of doxorubicin (DOX) as high as 87.3%, and substantial singlet oxygen generation (1O2) was shown under 808 nm laser and UV light irradiation. Our studies indicate that 3D MXene-DOX could effectively achieve Hela cells killing in vitro, which provides a multifunctional drug delivery platform as a prospective candidate for future combined cancer therapy.


Subject(s)
Antineoplastic Agents , Drug Delivery Systems/methods , Microspheres , Nanostructures , Photochemotherapy/methods , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Cell Survival/drug effects , HeLa Cells , Humans , Nanostructures/chemistry , Nanostructures/toxicity
19.
J Nanobiotechnology ; 19(1): 11, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33413447

ABSTRACT

BACKGROUND: Breast cancer bone metastasis has become one of the most common complications; however, it may cause cancer recurrence and bone nonunion, as well as local bone defects. METHODS: Herein, In vitro, we verified the effect of bioscaffold materials on cell proliferation and apoptosis through a CCK8 trial, staining of live/dead cells, and flow cytometry. We used immunofluorescence technology and flow cytometry to verify whether bioscaffold materials regulate macrophage polarization, and we used ALP staining, alizarin red staining and PCR to verify whether bioscaffold material promotes bone regeneration. In vivo, we once again studied the effect of bioscaffold materials on tumors by measuring tumor volume in mice, Tunel staining, and caspase-3 immunofluorescence. We also constructed a mouse skull ultimate defect model to verify the effect on bone regeneration. RESULTS: Graphene oxide (GO) nanoparticles, hydrated CePO4 nanorods and bioactive chitosan (CS) are combined to form a bioactive multifunctional CePO4/CS/GO scaffold, with characteristics such as photothermal therapy to kill tumors, macrophage polarization to promote blood vessel formation, and induction of bone formation. CePO4/CS/GO scaffold activates the caspase-3 proteasein local tumor cells, thereby lysing the DNA between nucleosomes and causing apoptosis. On the one hand, the as-released Ce3+ ions promote M2 polarization of macrophages, which secretes vascular endothelial growth factor (VEGF) and Arginase-1 (Arg-1), which promotes angiogenesis. On the other hand, the as-released Ce3+ ions also activated the BMP-2/Smad signaling pathway which facilitated bone tissue regeneration. CONCLUSION: The multifunctional CePO4/CS/GO scaffolds may become a promising platform for therapy of breast cancer bone metastases.


Subject(s)
Breast Neoplasms/drug therapy , Cerium/chemistry , Graphite/pharmacology , Nanotubes/chemistry , Phosphates/chemistry , 3T3 Cells , Animals , Biocompatible Materials , Bone Neoplasms/drug therapy , Bone Neoplasms/metabolism , Bone Regeneration , Bone and Bones , Breast Neoplasms/metabolism , Cell Proliferation , Chitosan , Disease Models, Animal , Female , Macrophages , Mice , Neoplasm Metastasis , Osteogenesis , RAW 264.7 Cells , Rats , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A
20.
Nucleic Acids Res ; 47(D1): D344-D350, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30380109

ABSTRACT

Here, we described the updated database iEKPD 2.0 (http://iekpd.biocuckoo.org) for eukaryotic protein kinases (PKs), protein phosphatases (PPs) and proteins containing phosphoprotein-binding domains (PPBDs), which are key molecules responsible for phosphorylation-dependent signalling networks and participate in the regulation of almost all biological processes and pathways. In total, iEKPD 2.0 contained 197 348 phosphorylation regulators, including 109 912 PKs, 23 294 PPs and 68 748 PPBD-containing proteins in 164 eukaryotic species. In particular, we provided rich annotations for the regulators of eight model organisms, especially humans, by compiling and integrating the knowledge from 100 widely used public databases that cover 13 aspects, including cancer mutations, genetic variations, disease-associated information, mRNA expression, DNA & RNA elements, DNA methylation, molecular interactions, drug-target relations, protein 3D structures, post-translational modifications, protein expressions/proteomics, subcellular localizations and protein functional annotations. Compared with our previously developed EKPD 1.0 (∼0.5 GB), iEKPD 2.0 contains ∼99.8 GB of data with an ∼200-fold increase in data volume. We anticipate that iEKPD 2.0 represents a more useful resource for further study of phosphorylation regulators.


Subject(s)
Databases, Protein , Eukaryota/genetics , Molecular Sequence Annotation , Phosphoprotein Phosphatases/genetics , Protein Kinases/genetics , Animals , Data Collection , Humans , Phosphoproteins/metabolism , Phosphorylation , Protein Domains/genetics , Protein Processing, Post-Translational , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL