Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.012
Filter
Add more filters

Publication year range
1.
Nature ; 612(7940): 519-527, 2022 12.
Article in English | MEDLINE | ID: mdl-36477534

ABSTRACT

In mice and humans, sleep quantity is governed by genetic factors and exhibits age-dependent variation1-3. However, the core molecular pathways and effector mechanisms that regulate sleep duration in mammals remain unclear. Here, we characterize a major signalling pathway for the transcriptional regulation of sleep in mice using adeno-associated virus-mediated somatic genetics analysis4. Chimeric knockout of LKB1 kinase-an activator of AMPK-related protein kinase SIK35-7-in adult mouse brain markedly reduces the amount and delta power-a measure of sleep depth-of non-rapid eye movement sleep (NREMS). Downstream of the LKB1-SIK3 pathway, gain or loss-of-function of the histone deacetylases HDAC4 and HDAC5 in adult brain neurons causes bidirectional changes of NREMS amount and delta power. Moreover, phosphorylation of HDAC4 and HDAC5 is associated with increased sleep need, and HDAC4 specifically regulates NREMS amount in posterior hypothalamus. Genetic and transcriptomic studies reveal that HDAC4 cooperates with CREB in both transcriptional and sleep regulation. These findings introduce the concept of signalling pathways targeting transcription modulators to regulate daily sleep amount and demonstrate the power of somatic genetics in mouse sleep research.


Subject(s)
Signal Transduction , Sleep Duration , Transcription, Genetic , Animals , Mice , Gene Expression Regulation , Phosphorylation , Signal Transduction/physiology , Sleep, Slow-Wave/genetics , Gene Expression Profiling
2.
Immunol Rev ; 321(1): 52-70, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37897080

ABSTRACT

Necroptosis is generally considered as an inflammatory cell death form. The core regulators of necroptotic signaling are receptor-interacting serine-threonine protein kinases 1 (RIPK1) and RIPK3, and the executioner, mixed lineage kinase domain-like pseudokinase (MLKL). Evidence demonstrates that necroptosis contributes profoundly to inflammatory respiratory diseases that are common public health problem. Necroptosis occurs in nearly all pulmonary cell types in the settings of inflammatory respiratory diseases. The influence of necroptosis on cells varies depending upon the type of cells, tissues, organs, etc., which is an important factor to consider. Thus, in this review, we briefly summarize the current state of knowledge regarding the biology of necroptosis, and focus on the key molecular mechanisms that define the necroptosis status of specific cell types in inflammatory respiratory diseases. We also discuss the clinical potential of small molecular inhibitors of necroptosis in treating inflammatory respiratory diseases, and describe the pathological processes that engage cross talk between necroptosis and other cell death pathways in the context of respiratory inflammation. The rapid advancement of single-cell technologies will help understand the key mechanisms underlying cell type-specific necroptosis that are critical to effectively treat pathogenic lung infections and inflammatory respiratory diseases.


Subject(s)
Protein Kinases , Respiratory Tract Diseases , Humans , Protein Kinases/metabolism , Necroptosis/physiology , Cell Death , Signal Transduction , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Apoptosis
3.
Blood ; 143(18): 1825-1836, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38211332

ABSTRACT

ABSTRACT: Venetoclax, the first-generation inhibitor of the apoptosis regulator B-cell lymphoma 2 (BCL2), disrupts the interaction between BCL2 and proapoptotic proteins, promoting the apoptosis in malignant cells. Venetoclax is the mainstay of therapy for relapsed chronic lymphocytic leukemia and is under investigation in multiple clinical trials for the treatment of various cancers. Although venetoclax treatment can result in high rates of durable remission, relapse has been widely observed, indicating the emergence of drug resistance. The G101V mutation in BCL2 is frequently observed in patients who relapsed treated with venetoclax and sufficient to confer resistance to venetoclax by interfering with compound binding. Therefore, the development of next-generation BCL2 inhibitors to overcome drug resistance is urgently needed. In this study, we discovered that sonrotoclax, a potent and selective BCL2 inhibitor, demonstrates stronger cytotoxic activity in various hematologic cancer cells and more profound tumor growth inhibition in multiple hematologic tumor models than venetoclax. Notably, sonrotoclax effectively inhibits venetoclax-resistant BCL2 variants, such as G101V. The crystal structures of wild-type BCL2/BCL2 G101V in complex with sonrotoclax revealed that sonrotoclax adopts a novel binding mode within the P2 pocket of BCL2 and could explain why sonrotoclax maintains stronger potency than venetoclax against the G101V mutant. In summary, sonrotoclax emerges as a potential second-generation BCL2 inhibitor for the treatment of hematologic malignancies with the potential to overcome BCL2 mutation-induced venetoclax resistance. Sonrotoclax is currently under investigation in multiple clinical trials.


Subject(s)
Antineoplastic Agents , Bridged Bicyclo Compounds, Heterocyclic , Drug Resistance, Neoplasm , Hematologic Neoplasms , Proto-Oncogene Proteins c-bcl-2 , Sulfonamides , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Humans , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Animals , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Xenograft Model Antitumor Assays , Cell Line, Tumor , Mutation , Apoptosis/drug effects
4.
Ann Neurol ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860520

ABSTRACT

OBJECTIVE: The role of gamma-aminobutyric acid-ergic (GABAergic) neuron impairment in Alzheimer's disease (AD), and if and how transplantation of healthy GABAergic neurons can improve AD, remain unknown. METHODS: Human-derived medial ganglionic eminence progenitors (hiMGEs) differentiated from programmed induced neural precursor cells (hiNPCs) were injected into the dentate gyrus region of the hippocampus (HIP). RESULTS: We showed that grafts migrate to the whole brain and form functional synaptic connections in amyloid precursor protein gene/ presenilin-1 (APP/PS1) chimeric mice. Following transplantation of hiMGEs, behavioral deficits and AD-related pathology were alleviated and defective neurons were repaired. Notably, exosomes secreted from hiMGEs, which are rich in anti-inflammatory miRNA, inhibited astrocyte activation in vitro and in vivo, and the mechanism was related to regulation of CD4+ Th1 cells mediated tumor necrosis factor (TNF) pathway. INTERPRETATION: Taken together, these findings support the hypothesis that hiMGEs transplantation is an alternative treatment for neuronal loss in AD and demonstrate that exosomes with anti-inflammatory activity derived from hiMGEs are important factors for graft survival. ANN NEUROL 2024.

5.
Mol Psychiatry ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744992

ABSTRACT

High-impact genetic variants associated with neurodevelopmental disorders provide biologically-defined entry points for mechanistic investigation. The 3q29 deletion (3q29Del) is one such variant, conferring a 40-100-fold increased risk for schizophrenia, as well as high risk for autism and intellectual disability. However, the mechanisms leading to neurodevelopmental disability remain largely unknown. Here, we report the first in vivo quantitative neuroimaging study in individuals with 3q29Del (N = 24) and neurotypical controls (N = 1608) using structural MRI. Given prior radiology reports of posterior fossa abnormalities in 3q29Del, we focused our investigation on the cerebellum and its tissue-types and lobules. Additionally, we compared the prevalence of cystic/cyst-like malformations of the posterior fossa between 3q29Del and controls and examined the association between neuroanatomical findings and quantitative traits to probe gene-brain-behavior relationships. 3q29Del participants had smaller cerebellar cortex volumes than controls, before and after correction for intracranial volume (ICV). An anterior-posterior gradient emerged in finer grained lobule-based and voxel-wise analyses. 3q29Del participants also had larger cerebellar white matter volumes than controls following ICV-correction and displayed elevated rates of posterior fossa arachnoid cysts and mega cisterna magna findings independent of cerebellar volume. Cerebellar white matter and subregional gray matter volumes were associated with visual-perception and visual-motor integration skills as well as IQ, while cystic/cyst-like malformations yielded no behavioral link. In summary, we find that abnormal development of cerebellar structures may represent neuroimaging-based biomarkers of cognitive and sensorimotor function in 3q29Del, adding to the growing evidence identifying cerebellar pathology as an intersection point between syndromic and idiopathic forms of neurodevelopmental disabilities.

6.
EMBO Rep ; 24(10): e57032, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37650863

ABSTRACT

Bromodomain-containing protein 4 (BRD4) is overexpressed and functionally implicated in various myeloid malignancies. However, the role of BRD4 in normal hematopoiesis remains largely unknown. Here, utilizing an inducible Brd4 knockout mouse model, we find that deletion of Brd4 (Brd4Δ/Δ ) in the hematopoietic system impairs hematopoietic stem cell (HSC) self-renewal and differentiation, which associates with cell cycle arrest and senescence. ATAC-seq analysis shows increased chromatin accessibility in Brd4Δ/Δ hematopoietic stem/progenitor cells (HSC/HPCs). Genome-wide mapping with cleavage under target and release using nuclease (CUT&RUN) assays demonstrate that increased global enrichment of H3K122ac and H3K4me3 in Brd4Δ/Δ HSC/HPCs is associated with the upregulation of senescence-specific genes. Interestingly, Brd4 deletion increases clipped H3 (cH3) which correlates with the upregulation of senescence-specific genes and results in a higher frequency of senescent HSC/HPCs. Re-expression of BRD4 reduces cH3 levels and rescues the senescence rate in Brd4Δ/Δ HSC/HPCs. This study unveils an important role of BRD4 in HSC/HPC function by preventing H3 clipping and suppressing senescence gene expression.


Subject(s)
Histones , Transcription Factors , Animals , Mice , Transcription Factors/genetics , Transcription Factors/metabolism , Histones/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Cellular Senescence/genetics , Hematopoietic Stem Cells/metabolism , Cell Differentiation , Hematopoiesis
7.
Plant Mol Biol ; 114(3): 62, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771394

ABSTRACT

Fusarium head blight (FHB) stands out as one of the most devastating wheat diseases and leads to significantly grain yield losses and quality reductions in epidemic years. Exploring quantitative trait loci (QTL) for FHB resistance is a critical step for developing new FHB-resistant varieties. We previously constructed a genetic map of unigenes (UG-Map) according to the physical positions using a set of recombinant-inbred lines (RILs) derived from the cross of 'TN18 × LM6' (TL-RILs). Here, the number of diseased spikelets (NDS) and relative disease index (RDI) for FHB resistance were investigated under four environments using TL-RILs, which were distributed across 13 chromosomes. A number of 36 candidate genes for NDS and RDI from of 19 stable QTLs were identified. The average number of candidate genes per QTL was 1.89, with 14 (73.7%), two (10.5%), and three (15.8%) QTLs including one, two, and 3-10 candidate genes, respectively. Among the 24 candidate genes annotated in the reference genome RefSeq v1.1, the homologous genes of seven candidate genes, including TraesCS4B02G227300 for QNds/Rdi-4BL-4553, TraesCS5B02G303200, TraesCS5B02G303300, TraesCS5B02G303700, TraesCS5B02G303800 and TraesCS5B02G304000 for QNds/Rdi-5BL-9509, and TraesCS7A02G568400 for QNds/Rdi-7AL-14499, were previously reported to be related to FHB resistance in wheat, barely or Brachypodium distachyon. These genes should be closely associated with FHB resistance in wheat. In addition, the homologous genes of five genes, including TraesCS1A02G037600LC for QNds-1AS-2225, TraesCS1D02G017800 and TraesCS1D02G017900 for QNds-1DS-527, TraesCS1D02G018000 for QRdi-1DS-575, and TraesCS4B02G227400 for QNds/Rdi-4BL-4553, were involved in plant defense responses against pathogens. These genes should be likely associated with FHB resistance in wheat.


Subject(s)
Chromosome Mapping , Disease Resistance , Fusarium , Plant Diseases , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/microbiology , Quantitative Trait Loci/genetics , Fusarium/physiology , Fusarium/pathogenicity , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Genes, Plant , Chromosomes, Plant/genetics
8.
Mol Biol Evol ; 40(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38069902

ABSTRACT

Rumpless chickens exhibit an abnormality in their tail development. The genetics and biology of this trait has been studied for decades to illustrate a broad variation in both the types of inheritance and the severity in the developmental defects of the tail. In this study, we created a backcross pedigree by intercrossing Piao (rumpless) with Xianju (normal) to investigate the genetic mechanisms and molecular basis of the rumpless trait in Piao chicken. Through genome-wide association and linkage analyses, the candidate region was fine-mapped to 798.5 kb (chromosome 2: 86.9 to 87.7 Mb). Whole-genome sequencing analyses identified a single variant, a 4.2 kb deletion, which was completely associated with the rumpless phenotype. Explorations of the expression data identified a novel causative gene, Rum, that produced a long, intronless transcript across the deletion. The expression of Rum is embryo-specific, and it regulates the expression of MSGN1, a key factor in regulating T-box transcription factors required for mesoderm formation and differentiation. These results provide genetic and molecular experimental evidence for a novel mechanism regulating tail development in chicken and report the likely causal mutation for the tail abnormity in the Piao chicken. The novel regulatory gene, Rum, will, due to its role in fundamental embryo development, be of interest for further explorations of a potential role in tail and skeletal development also in other vertebrates.


Subject(s)
Chickens , Genome-Wide Association Study , Animals , Chickens/genetics , Loss of Function Mutation , Mutation , Phenotype , Polymorphism, Single Nucleotide
9.
Small ; 20(2): e2304998, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37670222

ABSTRACT

Perturbation of the copper (Cu) active site by electron manipulation is a crucial factor in determining the activity and selectivity of electrochemical carbon dioxide (CO2 ) reduction reaction (e-CO2 RR) in Cu-based molecular catalysts. However, much ambiguity is present concerning their electronic structure-function relationships. Here, three molecular Cu-based porphyrin catalysts with different electron densities at the Cu active site, Cu tetrakis(4-methoxyphenyl)porphyrin (Cu─T(OMe)PP), Cu tetraphenylporphyrin (Cu─THPP), and Cu tetrakis(4-bromophenyl)porphyrin (Cu─TBrPP), are prepared. Although all three catalysts exhibit e-CO2 RR activity and the same reaction pathway, their performance is significantly affected by the electronic structure of the Cu site. Theoretical and experimental investigations verify that the conjugated effect of ─OCH3 and ─Br groups lowers the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbitals (LUMO) gap of Cu─T(OMe)PP and Cu─TBrPP, promoting faster electron transfer between Cu and CO2 , thereby improving their e-CO2 RR activity. Moreover, the high inductive effect of ─Br group reduces the electron density of Cu active site of Cu─TBrPP, facilitating the hydrolysis of the bound H2 O and thus creating a preferable local microenvironment, further enhancing the catalytic performance. This work provides new insights into the relationships between the substituent group characteristics with e-CO2 RR performance and is highly instructive for the design of efficient Cu-based e-CO2 RR electrocatalysts.

10.
Plant Biotechnol J ; 22(5): 1282-1298, 2024 May.
Article in English | MEDLINE | ID: mdl-38124464

ABSTRACT

The repeated emergence of the same trait (convergent evolution) in distinct species is an interesting phenomenon and manifests visibly the power of natural selection. The underlying genetic mechanisms have important implications to understand how the genome evolves under environmental challenges. In cereal crops, both rice and barley can develop black-coloured husk/pericarp due to melanin accumulation. However, it is unclear if this trait shares a common origin. Here, we fine-mapped the barley HvBlp gene controlling the black husk/pericarp trait and confirmed its function by gene silencing. The result was further supported by a yellow husk/pericarp mutant with deletion of the HvBlp gene, derived from gamma ray radiation of the wild-type W1. HvBlp encodes a putative tyrosine transporter homologous to the black husk gene OsBh4 in rice. Surprisingly, synteny and phylogenetic analyses showed that HvBlp and OsBh4 belonged to different lineages resulted from dispersed and tandem duplications, respectively, suggesting that the black husk/pericarp trait has emerged independently. The dispersed duplication (dated at 21.23 MYA) yielding HvBlp occurred exclusively in the common ancestor of Triticeae. HvBlp and OsBh4 displayed converged transcription in husk/pericarp tissues, contributing to the black husk/pericarp trait. Further transcriptome and metabolome data identified critical candidate genes and metabolites related to melanin production in barley. Taken together, our study described a compelling case of convergent evolution resulted from transcriptional convergence after repeated gene duplication, providing valuable genetic insights into phenotypic evolution. The identification of the black husk/pericarp genes in barley also has great potential in breeding for stress-resilient varieties with higher nutritional values.


Subject(s)
Hordeum , Oryza , Hordeum/genetics , Hordeum/metabolism , Oryza/genetics , Oryza/metabolism , Phylogeny , Genes, Plant , Melanins/genetics , Melanins/metabolism , Plant Breeding , Amino Acid Transport Systems/genetics
11.
J Med Virol ; 96(1): e29380, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38235849

ABSTRACT

Hepatic venous pressure gradient (HVPG) is the gold standard for evaluating clinically significant portal hypertension (CSPH). However, reliable noninvasive methods are limited. Our study aims to investigate the diagnostic value of serum Golgi protein 73 (GP73) for CSPH in patients with compensated cirrhosis. The study enrolled 262 consecutive patients with compensated cirrhosis from three centers in China from February 2021 to September 2023, who underwent both serum GP73 tests and HVPG measurements. CSPH was defined as HVPG ≥ 10 mmHg. Diagnostic accuracy was evaluated using the areas under the receiver operating characteristic curve (AUC). The prevalence of CSPH was 56.9% (n = 149). There were significant differences between the CSPH and non-CSPH groups in the median serum GP73 level (126.8 vs. 73.1 ng/mL, p < 0.001). GP73 level showed a significant positive linear correlation with HVPG (r = 0.459, p < 0.001). The AUC for the diagnosis of CSPH using serum GP73 alone was 0.75 (95% confidence interval [CI] 0.68-0.81). Multivariate logistic regression analysis determined that the levels of GP73, platelets and international normalized ratio were independently associated with CSPH. The combination of these three markers was termed "IP73" score with an AUC value of 0.85 (95% CI 0.80-0.89) for CSPH. Using 0 as a cut-off value, the specificity and sensitivity of IP73 score were 77.9% and 81.9%, respectively. The IP73 score offers a novel, simple and noninvasive method of assessing CSPH in patients with compensated cirrhosis. A cut-off value of the IP73 score at 0 can distinguish patients with or without CSPH.


Subject(s)
Elasticity Imaging Techniques , Hypertension, Portal , Humans , Biomarkers , Hypertension, Portal/complications , Hypertension, Portal/diagnosis , Liver , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , ROC Curve , Time Factors
12.
Plant Cell Environ ; 47(6): 2044-2057, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38392920

ABSTRACT

Blue light photoreceptor cryptochrome 1 (CRY1) in herbaceous plants plays crucial roles in various developmental processes, including cotyledon expansion, hypocotyl elongation and anthocyanin biosynthesis. However, the function of CRY1 in perennial trees is unclear. In this study, we identified two ortholog genes of CRY1 (PagCRY1a and PagCRY1b) from Populus, which displayed high sequence similarity to Arabidopsis CRY1. Overexpression of PagCRY1 substantially inhibited plant growth and promoted secondary xylem development in Populus, while CRISPR/Cas9-mediated knockout of PagCRY1 enhanced plant growth and delayed secondary xylem development. Moreover, overexpression of PagCRY1 dramatically increased anthocyanin accumulation. The further analysis supported that PagCRY1 functions specifically in response to blue light. Taken together, our results demonstrated that modulating the expression of blue light photoreceptor CRY1 ortholog gene in Populus could significantly influence plant biomass production and the process of wood formation, laying a foundation for further investigating the light-regulated tree growth.


Subject(s)
Anthocyanins , Arabidopsis Proteins , Cryptochromes , Gene Expression Regulation, Plant , Light , Populus , Wood , Populus/genetics , Populus/metabolism , Populus/growth & development , Cryptochromes/metabolism , Cryptochromes/genetics , Anthocyanins/biosynthesis , Anthocyanins/metabolism , Wood/metabolism , Wood/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Xylem/metabolism , Xylem/genetics , Xylem/growth & development , Photoreceptors, Plant/metabolism , Photoreceptors, Plant/genetics , Blue Light
13.
Cardiovasc Diabetol ; 23(1): 210, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902730

ABSTRACT

BACKGROUND: Stress hyperglycemia occurs frequently in patients following acute myocardial infarction (AMI) and may aggravate myocardial stiffness, but relevant evidence is still lacking. Accordingly, this study aimed to examine the impact of admission stress hyperglycemia on left ventricular (LV) myocardial deformation in patients following AMI. METHODS: A total of 171 patients with first AMI (96 with normoglycemia and 75 with hyperglycemia) underwent cardiac magnetic resonance (CMR) examination were included. AMI patients were classified according to admission blood glucose level (aBGL): < 7.8 mmol/L (n = 96), 7.8-11.1 mmol/L (n = 41) and ≥ 11.1 mmol/L (n = 34). LV strains, including global radial/circumferential/longitudinal peak strain (PS)/peak systolic strain rate (PSSR)/peak diastolic strain rate (PDSR), were measured and compared between groups. Further, subgroup analyses were separately conducted for AMI patients with and without diabetes. Multivariate analysis was employed to assess the independent association between aBGL and LV global PS in AMI patients. RESULTS: LV global PS, PSSR and PDSR were decreased in radial, circumferential and longitudinal directions in hyperglycemic AMI patients compared with normoglycemic AMI patients (all P < 0.05). These differences were more obvious in patients with diabetes than those without diabetes. AMI patients with aBGL between 7.8 and 11.1 mmol/L demonstrated significant decreased radial and longitudinal PS, radial PSSR, and radial and longitudinal PDSR than those with aBGL < 7.8 mmol/L (all P < 0.05). AMI patients with aBGL ≥ 11.1 mmol/L showed significantly decreased PS, PSSR and PDSR in all three directions than those with aBGL < 7.8 mmol/L, and decreased longitudinal PSSR than those with aBGL between 7.8 and 11.1 (all P < 0.05). Further, aBGL was significantly and independently associated with radial (ß = - 0.166, P = 0.003) and longitudinal (ß = 0.143, P = 0.008) PS. CONCLUSIONS: Hyperglycemia may exacerbate LV myocardial stiffness in patients experienced first AMI, leading to reduction in LV strains. aBGL was an independent indicator of impaired LV global PS in AMI patients. Blood glucose monitoring is more valuable for AMI patients with diabetes.


Subject(s)
Biomarkers , Blood Glucose , Hyperglycemia , Magnetic Resonance Imaging, Cine , Patient Admission , Predictive Value of Tests , Ventricular Function, Left , Humans , Male , Female , Middle Aged , Hyperglycemia/physiopathology , Hyperglycemia/blood , Hyperglycemia/diagnosis , Hyperglycemia/complications , Aged , Blood Glucose/metabolism , Biomarkers/blood , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/blood , Myocardial Infarction/physiopathology , Myocardial Infarction/complications , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/blood , Myocardial Infarction/diagnosis , Risk Factors , Retrospective Studies , Biomechanical Phenomena
14.
Cardiovasc Diabetol ; 23(1): 133, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654269

ABSTRACT

BACKGROUND: Metabolic syndrome (MetS) can increase the risk of morbidity and mortality of cardiovascular disease and obstructive coronary artery disease (OCAD), which usually have a poor prognosis. This study aimed to explore the impact of MetS on left ventricular (LV) deformation and function in OCAD patients and investigate the independent factors of impaired LV function and deformation. MATERIALS AND METHODS: A total of 121 patients with OCAD and 52 sex- and age-matched controls who underwent cardiac magnetic resonance scanning were enrolled in the study. All OCAD patients were divided into two groups: OCAD with MetS [OCAD(MetS+), n = 83] and OCAD without MetS [OCAD(MetS-), n = 38]. LV functional and global strain parameters were measured and compared among the three groups. Multivariable linear regression analyses were constructed to investigate the independent factors of LV impairment in OCAD patients. Logistic regression analysis and receiver operating characteristic (ROC) curve analysis were performed to test the prediction efficiency of MetS for LV impairment. RESULTS: From controls to the OCAD(MetS-) group to the OCAD(MetS+) group, LV mass (LVM) increased, and LV global function index (LVGFI) and LV global longitudinal peak strain (GLPS) decreased (all p < 0.05). Compared with the OCAD(MetS-) group, the LV GLPS declined significantly (p = 0.027), the LVM increased (p = 0.006), and the LVGFI decreased (p = 0.043) in the OCAD(MetS+) group. After adjustment for covariates in OCAD patients, MetS was an independent factor of decreased LV GLPS (ß = - 0.211, p = 0.002) and increased LVM (ß = 0.221, p = 0.003). The logistic multivariable regression analysis and ROC analysis showed that combined MetS improved the efficiency of predicting LV GLPS reduction (AUC = 0.88) and LVM (AUC = 0.89) increase. CONCLUSIONS: MetS aggravated the damage of LV deformation and function in OCAD patients and was independently associated with LV deformation and impaired LV strain. Additionally, MetS increased the prediction efficiency of increased LVM and decreased LV GLPS. Early detection and intervention of MetS in patients with OCAD is of great significance.


Subject(s)
Metabolic Syndrome , Predictive Value of Tests , Ventricular Dysfunction, Left , Ventricular Function, Left , Humans , Male , Female , Middle Aged , Metabolic Syndrome/physiopathology , Metabolic Syndrome/complications , Metabolic Syndrome/diagnosis , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology , Aged , Case-Control Studies , Risk Assessment , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/physiopathology , Coronary Artery Disease/complications , Magnetic Resonance Imaging, Cine , Risk Factors , Prognosis , Coronary Stenosis/physiopathology , Coronary Stenosis/diagnostic imaging , Coronary Stenosis/complications
15.
Cardiovasc Diabetol ; 23(1): 148, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685007

ABSTRACT

BACKGROUND: Glycemic control, as measured by glycosylated hemoglobin (HbA1c), is an important biomarker to evaluate diabetes severity and is believed to be associated with heart failure development. Type 2 diabetes mellitus (T2DM) and heart failure with reduced ejection fraction (HFrEF) commonly coexist, and the combination of these two diseases indicates a considerably poorer outcome than either disease alone. Therefore, glycemic control should be carefully managed. The present study aimed to explore the association between glycemic control and clinical outcomes, and to determine the optimal glycemic target in this specific population. METHODS: A total of 262 patients who underwent cardiac MRI were included and were split by HbA1c levels [HbA1c < 6.5% (intensive control), HbA1c 6.5-7.5% (modest control), and HbA1c > 7.5% (poor control)]. The biventricular volume and function, as well as left ventricular (LV) systolic strains in patients in different HbA1c categories, were measured and compared. The primary and secondary outcomes were recorded. The association of different HbA1c levels with adverse outcomes was assessed. RESULTS: Despite similar biventricular ejection fractions, both patients with intensive and poor glycemic control exhibited prominent deterioration of LV systolic strain in the longitudinal component (P = 0.004). After a median follow-up of 35.0 months, 55 patients (21.0%) experienced at least one confirmed endpoint event. Cox multivariable analysis indicated that both patients in the lowest and highest HbA1c categories exhibited a more than 2-fold increase in the risk for primary outcomes [HbA1c < 6.5%: hazard ratio (HR) = 2.42, 95% confidence interval (CI) = 1.07-5.45; P = 0.033; HbA1c > 7.5%: HR = 2.24, 95% CI = 1.01-4.99; P = 0.038] and secondary outcomes (HbA1c < 6.5%: HR = 2.84, 95% CI = 1.16-6.96; P = 0.022; HbA1c > 7.5%: HR = 2.65, 95% CI = 1.08-6.50; P = 0.038) compared with those in the middle HbA1c category. CONCLUSIONS: We showed a U-shaped association of glycemic control with clinical outcomes in patients with T2DM and HFrEF, with the lowest risk of adverse outcomes among patients with modest glycemic control. HbA1c between 6.5% and 7.5% may be served as the optimal hypoglycemic target in this specific population.


Subject(s)
Biomarkers , Blood Glucose , Diabetes Mellitus, Type 2 , Glycated Hemoglobin , Glycemic Control , Heart Failure , Predictive Value of Tests , Stroke Volume , Ventricular Function, Left , Ventricular Remodeling , Humans , Male , Female , Heart Failure/physiopathology , Heart Failure/blood , Heart Failure/diagnostic imaging , Glycated Hemoglobin/metabolism , Middle Aged , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/physiopathology , Aged , Blood Glucose/metabolism , Biomarkers/blood , Risk Factors , Retrospective Studies , Magnetic Resonance Imaging, Cine , Time Factors , Hypoglycemic Agents/therapeutic use , Risk Assessment , Prognosis
16.
Cardiovasc Diabetol ; 23(1): 9, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38184602

ABSTRACT

BACKGROUND: Microvascular pathology is one of the main characteristics of diabetic cardiomyopathy; however, the early longitudinal course of diabetic microvascular dysfunction remains uncertain. This study aimed to investigate the early dynamic changes in left ventricular (LV) microvascular function in diabetic pig model using the cardiac magnetic resonance (CMR)-derived quantitative perfusion technique. METHODS: Twelve pigs with streptozotocin-induced diabetes mellitus (DM) were included in this study, and longitudinal CMR scanning was performed before and 2, 6, 10, and 16 months after diabetic modeling. CMR-derived semiquantitative parameters (upslope, maximal signal intensity, perfusion index, and myocardial perfusion reserve index [MPRI]) and fully quantitative perfusion parameters (myocardial blood flow [MBF] and myocardial perfusion reserve [MPR]) were analyzed to evaluate longitudinal changes in LV myocardial microvascular function. Pearson correlation was used to analyze the relationship between LV structure and function and myocardial perfusion function. RESULTS: With the progression of DM duration, the upslope at rest showed a gradually increasing trend (P = 0.029); however, the upslope at stress and MBF did not change significantly (P > 0.05). Regarding perfusion reserve function, both MPRI and MPR showed a decreasing trend with the progression of disease duration (MPRI, P = 0.001; MPR, P = 0.042), with high consistency (r = 0.551, P < 0.001). Furthermore, LV MPR is moderately associated with LV longitudinal strain (r = - 0.353, P = 0.022), LV remodeling index (r = - 0.312, P = 0.033), fasting blood glucose (r = - 0.313, P = 0.043), and HbA1c (r = - 0.309, P = 0.046). Microscopically, pathological results showed that collagen volume fraction increased gradually, whereas no significant decrease in microvascular density was observed with the progression of DM duration. CONCLUSIONS: Myocardial microvascular reserve function decreased gradually in the early stage of DM, which is related to both structural (but not reduced microvascular density) and functional abnormalities of microvessels, and is associated with increased blood glucose, reduced LV deformation, and myocardial remodeling.


Subject(s)
Diabetes Mellitus, Experimental , Ventricular Dysfunction, Left , Animals , Swine , Blood Glucose , Heart , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology , Perfusion
17.
Cardiovasc Diabetol ; 23(1): 28, 2024 01 13.
Article in English | MEDLINE | ID: mdl-38218882

ABSTRACT

BACKGROUND: Sarcopenia is frequently found in patients with heart failure with reduced ejection fraction (HFrEF) and is associated with reduced exercise capacity, poor quality of life and adverse outcomes. Recent evidence suggests that axial thoracic skeletal muscle size could be used as a surrogate to assess sarcopenia in HFrEF. Since diabetes mellitus (DM) is one of the most common comorbidities with HFrEF, we aimed to explore the potential association of axial thoracic skeletal muscle size with left ventricular (LV) remodeling and determine its prognostic significance in this condition. METHODS: A total of 243 diabetes patients with HFrEF were included in this study. Bilateral axial thoracic skeletal muscle size was obtained using cardiac MRI. Patients were stratified by the tertiles of axial thoracic skeletal muscle index (SMI). LV structural and functional indices, as well as amino-terminal pro-B-type natriuretic peptide (NT-proBNP), were measured. The determinants of elevated NT-proBNP were assessed using linear regression analysis. The associations between thoracic SMI and clinical outcomes were assessed using a multivariable Cox proportional hazards model. RESULTS: Patients in the lowest tertile of thoracic SMI displayed a deterioration in LV systolic strain in three components, together with an increase in LV mass and a heavier burden of myocardial fibrosis (all P < 0.05). Moreover, thoracic SMI (ß = -0.25; P < 0.001), rather than body mass index (ß = -0.04; P = 0.55), was independently associated with the level of NT-proBNP. The median follow-up duration was 33.6 months (IQR, 20.4-52.8 months). Patients with adverse outcomes showed a lower thoracic SMI (40.1 [34.3, 47.9] cm2/m2 vs. 45.3 [37.3, 55.0] cm2/m2; P < 0.05) but a similar BMI (P = 0.76) compared with those without adverse outcomes. A higher thoracic SMI indicated a lower risk of adverse outcomes (hazard ratio: 0.96; 95% confidence interval: 0.92-0.99; P = 0.01). CONCLUSIONS: With respect to diabetes patients with HFrEF, thoracic SMI is a novel alternative for evaluating muscle wasting in sarcopenia that can be obtained by a readily available routine cardiac MRI protocol. A reduction in thoracic skeletal muscle size predicts poor outcomes in the context of DM with HFrEF.


Subject(s)
Diabetes Mellitus , Heart Failure , Sarcopenia , Ventricular Dysfunction, Left , Humans , Heart Failure/diagnostic imaging , Sarcopenia/diagnostic imaging , Sarcopenia/epidemiology , Quality of Life , Biomarkers , Stroke Volume/physiology , Natriuretic Peptide, Brain , Magnetic Resonance Imaging , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology , Peptide Fragments , Muscle, Skeletal/diagnostic imaging , Diabetes Mellitus/diagnosis , Diabetes Mellitus/epidemiology
18.
Cardiovasc Diabetol ; 23(1): 217, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38915040

ABSTRACT

BACKGROUND: Diabetic peripheral neuropathy (DPN) is the most prevalent complication of diabetes, and has been demonstrated to be independently associated with cardiovascular events and mortality. This aim of this study was to investigate the subclinical left ventricular (LV) myocardial dysfunction in type 2 diabetes mellitus (T2DM) patients with and without DPN. METHODS: One hundred and thirty T2DM patients without DPN, 61 patients with DPN and 65 age and sex-matched controls who underwent cardiovascular magnetic resonance (CMR) imaging were included, all subjects had no symptoms of heart failure and LV ejection fraction ≥ 50%. LV myocardial non-infarct late gadolinium enhancement (LGE) was determined. LV global strains, including radial, circumferential and longitudinal peak strain (PS) and peak systolic and diastolic strain rates (PSSR and PDSR, respectively), were evaluated using CMR feature tracking and compared among the three groups. Multivariable linear regression analyses were performed to determine the independent factors of reduced LV global myocardial strains in T2DM patients. RESULTS: The prevalence of non-infarct LGE was higher in patients with DPN than those without DPN (37.7% vs. 19.2%, p = 0.008). The LV radial and longitudinal PS (radial: 36.60 ± 7.24% vs. 33.57 ± 7.30% vs. 30.72 ± 8.68%; longitudinal: - 15.03 ± 2.52% vs. - 13.39 ± 2.48% vs. - 11.89 ± 3.02%), as well as longitudinal PDSR [0.89 (0.76, 1.05) 1/s vs. 0.80 (0.71, 0.93) 1/s vs. 0.77 (0.63, 0.87) 1/s] were decreased significantly from controls through T2DM patients without DPN to patients with DPN (all p < 0.001). LV radial and circumferential PDSR, as well as circumferential PS were reduced in both patient groups (all p < 0.05), but were not different between the two groups (all p > 0.05). Radial and longitudinal PSSR were decreased in patients with DPN (p = 0.006 and 0.003, respectively) but preserved in those without DPN (all p > 0.05). Multivariable linear regression analyses adjusting for confounders demonstrated that DPN was independently associated with LV radial and longitudinal PS (ß = - 3.025 and 1.187, p = 0.014 and 0.003, respectively) and PDSR (ß = 0.283 and - 0.086, p = 0.016 and 0.001, respectively), as well as radial PSSR (ß = - 0.266, p = 0.007). CONCLUSIONS: There was more severe subclinical LV dysfunction in T2DM patients complicated with DPN than those without DPN, suggesting further prospective study with more active intervention in this cohort of patients.


Subject(s)
Asymptomatic Diseases , Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Diabetic Neuropathies , Magnetic Resonance Imaging, Cine , Predictive Value of Tests , Ventricular Dysfunction, Left , Ventricular Function, Left , Humans , Male , Female , Middle Aged , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetic Neuropathies/physiopathology , Diabetic Neuropathies/diagnostic imaging , Diabetic Neuropathies/etiology , Diabetic Neuropathies/diagnosis , Diabetic Neuropathies/epidemiology , Aged , Case-Control Studies , Diabetic Cardiomyopathies/physiopathology , Diabetic Cardiomyopathies/diagnostic imaging , Diabetic Cardiomyopathies/etiology , Risk Factors , Prevalence , Cross-Sectional Studies , Stroke Volume , Myocardial Contraction
19.
Cardiovasc Diabetol ; 23(1): 90, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38448890

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) has been linked to an increased risk of cardiovascular death, overall mortality and heart failure in patients with type 2 diabetes mellitus (T2DM). The present study investigated the additive effects of paroxysmal AF on left ventricular (LV) function and deformation in T2DM patients with or without AF using the cardiovascular magnetic resonance feature tracking (CMR-FT) technique. METHODS: The present study encompassed 225 T2DM patients differentiated by the presence or absence of paroxysmal AF [T2DM(AF+) and T2DM(AF-), respectively], along with 75 age and sex matched controls, all of whom underwent CMR examination. LV function and global strains, including radial, circumferential and longitudinal peak strain (PS), as well as peak systolic and diastolic strain rates (PSSR and PDSR, respectively), were measured and compared among the groups. Multivariable linear regression analysis was used to examine the factors associated with LV global strains in patients with T2DM. RESULTS: The T2DM(AF+) group was the oldest, had the highest LV end­systolic volume index, lowest LV ejection fraction and estimated glomerular filtration rate compared to the control and T2DM(AF-) groups, and presented a shorter diabetes duration and lower HbA1c than the T2DM(AF-) group. LV PS-radial, PS-longitudinal and PDSR-radial declined successively from controls through the T2DM(AF-) group to the T2DM(AF+) group (all p < 0.001). Compared to the control group, LV PS-circumferential, PSSR-radial and PDSR-circumferential were decreased in the T2DM(AF+) group (all p < 0.001) but preserved in the T2DM(AF-) group. Among all clinical indices, AF was independently associated with worsening LV PS-longitudinal (ß = 2.218, p < 0.001), PS-circumferential (ß = 3.948, p < 0.001), PS-radial (ß = - 8.40, p < 0.001), PSSR-radial and -circumferential (ß = - 0.345 and 0.101, p = 0.002 and 0.014, respectively), PDSR-radial and -circumferential (ß = 0.359 and - 0.14, p = 0.022 and 0.003, respectively). CONCLUSIONS: In patients with T2DM, the presence of paroxysmal AF further exacerbates LV function and deformation. Proactive prevention, regular detection and early intervention of AF could potentially benefit T2DM patients.


Subject(s)
Atrial Fibrillation , Cardiovascular System , Diabetes Mellitus, Type 2 , Humans , Atrial Fibrillation/diagnosis , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Ventricular Function, Left , Magnetic Resonance Spectroscopy
20.
Chemistry ; 30(19): e202303739, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38287793

ABSTRACT

To expand the market capacity of p-diethylbenzene (PDEB), core-shell zeolite (TS-1@MCM-48) is designed as a catalyst for PDEB oxidation. TS-1@MCM-48 catalyst is synthesized by in-situ crystallization method and characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption, in-situ electron paramagnetic resonance (EPR) and 29Si nuclear magnetic resonance (29Si MAS-NMR). Oxidation of PDEB by H2O2 was investigated systematically in liquid phase. The conversion of PDEB over TS-1@MCM-48 was 28.1 % and the total selectivity was 72.6 %, where the selectivity of EAP (p-ethylacetophenone) and EPEA (4-ethyl-α-methylbenzyl alcohol) was 28.6 % and 44.0 %, respectively. Compared with TS-1 and MCM-48 zeolite, the conversion rate of reactants and the selectivity of products have been significantly improved. The catalytic performance of TS-1@MCM-48 is derived from its well-crystallized microporous core and mesoporous shell with regular channels, which make active sites of TS-1 zeolite in the catalyst be fully utilized and mass transfer resistance be largely reduced. Further through theoretical calculation, we propose that the oxidation of PDEB is the result of the combination and mutual transformation of free radical process and carbocation process. Core-shell structure ensures the conversion rate of raw materials and improves the selectivity of products.

SELECTION OF CITATIONS
SEARCH DETAIL