Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 649
Filter
Add more filters

Publication year range
1.
Immunity ; 57(6): 1306-1323.e8, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38815582

ABSTRACT

Group 3 innate lymphoid cells (ILC3s) regulate inflammation and tissue repair at mucosal sites, but whether these functions pertain to other tissues-like the kidneys-remains unclear. Here, we observed that renal fibrosis in humans was associated with increased ILC3s in the kidneys and blood. In mice, we showed that CXCR6+ ILC3s rapidly migrated from the intestinal mucosa and accumulated in the kidney via CXCL16 released from the injured tubules. Within the fibrotic kidney, ILC3s increased the expression of programmed cell death-1 (PD-1) and subsequent IL-17A production to directly activate myofibroblasts and fibrotic niche formation. ILC3 expression of PD-1 inhibited IL-23R endocytosis and consequently amplified the JAK2/STAT3/RORγt/IL-17A pathway that was essential for the pro-fibrogenic effect of ILC3s. Thus, we reveal a hitherto unrecognized migration pathway of ILC3s from the intestine to the kidney and the PD-1-dependent function of ILC3s in promoting renal fibrosis.


Subject(s)
Cell Movement , Fibrosis , Kidney , Lymphocytes , Programmed Cell Death 1 Receptor , Receptors, CXCR6 , Receptors, Interleukin , Signal Transduction , Animals , Fibrosis/immunology , Mice , Receptors, CXCR6/metabolism , Receptors, CXCR6/immunology , Programmed Cell Death 1 Receptor/metabolism , Signal Transduction/immunology , Cell Movement/immunology , Humans , Kidney/pathology , Kidney/immunology , Kidney/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Receptors, Interleukin/metabolism , Receptors, Interleukin/immunology , Mice, Inbred C57BL , Kidney Diseases/immunology , Kidney Diseases/metabolism , Kidney Diseases/pathology , Immunity, Innate/immunology , Mice, Knockout , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestines/immunology , Intestines/pathology
2.
Plant J ; 118(3): 766-786, 2024 May.
Article in English | MEDLINE | ID: mdl-38271098

ABSTRACT

Rhus chinensis Mill., an economically valuable Anacardiaceae species, is parasitized by the galling aphid Schlechtendalia chinensis, resulting in the formation of the Chinese gallnut (CG). Here, we report a chromosomal-level genome assembly of R. chinensis, with a total size of 389.40 Mb and scaffold N50 of 23.02 Mb. Comparative genomic and transcriptome analysis revealed that the enhanced structure of CG and nutritional metabolism contribute to improving the adaptability of R. chinensis to S. chinensis by supporting CG and galling aphid growth. CG was observed to be abundant in hydrolysable tannins (HT), particularly gallotannin and its isomers. Tandem repeat clusters of dehydroquinate dehydratase/shikimate dehydrogenase (DQD/SDH) and serine carboxypeptidase-like (SCPL) and their homologs involved in HT production were determined as specific to HT-rich species. The functional differentiation of DQD/SDH tandem duplicate genes and the significant contraction in the phenylalanine ammonia-lyase (PAL) gene family contributed to the accumulation of gallic acid and HT while minimizing the production of shikimic acid, flavonoids, and condensed tannins in CG. Furthermore, we identified one UDP glucosyltransferase (UGT84A), three carboxylesterase (CXE), and six SCPL genes from conserved tandem repeat clusters that are involved in gallotannin biosynthesis and hydrolysis in CG. We then constructed a regulatory network of these genes based on co-expression and transcription factor motif analysis. Our findings provide a genomic resource for the exploration of the underlying mechanisms of plant-galling insect interaction and highlight the importance of the functional divergence of tandem duplicate genes in the accumulation of secondary metabolites.


Subject(s)
Genome, Plant , Hydrolyzable Tannins , Rhus , Hydrolyzable Tannins/metabolism , Animals , Rhus/genetics , Genome, Plant/genetics , Aphids/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Chromosomes, Plant/genetics , Gene Expression Regulation, Plant , Host-Parasite Interactions
3.
J Am Chem Soc ; 146(6): 3764-3772, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38304977

ABSTRACT

TiO2-supported Pt species have been widely applied in numerous critical reactions involving photo-, thermo-, and electrochemical-catalysis for decades. Manipulation of the state of the Pt species in Pt/TiO2 catalysts is crucial for fine-tuning their catalytic performance. Here, we report an interesting discovery showing the epitaxial growth of PtO2 atomic layers on rutile TiO2, potentially allowing control of the states of active Pt species in Pt/TiO2 catalysts. The presence of PtO2 atomic layers could modulate the geometric configuration and electronic state of the Pt species under reduction conditions, resulting in a spread of the particle shape and obtaining a Pt/PtO2/TiO2 structure with more positive valence of Pt species. As a result, such a catalyst exhibits exceptional electrocatalytic activity and stability toward hydrogen evolution reaction, while also promoting the thermocatalytic CO oxidation, surpassing the performance of the Pt/TiO2 catalyst with no epitaxial structure. This novel epitaxial growth of the PtO2 structure on rutile TiO2 in Pt/TiO2 catalysts shows its potential in the rational design of highly active and economical catalysts toward diverse catalytic reactions.

4.
Plant Physiol ; 193(1): 339-355, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37249039

ABSTRACT

Drought and flooding are the two most important environmental factors limiting maize (Zea mays L.) production globally. This study aimed to investigate the physiological mechanisms and accurate evaluation indicators and methods of maize germplasm involved in drought and flooding stresses. The twice replicated pot experiments with 60 varieties, combined with the field validation experiment with 3 varieties, were conducted under well-watered, drought, and flooding conditions. Most varieties exhibited stronger tolerance to drought than flooding due to higher antioxidant enzyme activities, osmotic adjustment substances, and lower reactive oxygen species. In contrast, flooding stress resulted in higher levels of reactive oxygen species (particularly O2-), ascorbate peroxidase, catalase, peroxidase, and soluble sugars but lower levels of superoxide dismutase, proline, and soluble protein compared with well-watered conditions. Superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, proline, soluble sugars, and protein contents, in addition to plant height, leaf area/plant, and stem diameter, were accurate and representative indicators for evaluating maize tolerance to drought and flooding stresses and could determine a relatively high mean forecast accuracy of 100.0% for the comprehensive evaluation value. A total of 4 principal components were extracted, in which different principal components played a vital role in resisting different water stresses. Finally, the accuracy of the 3 varieties screened by multivariate analysis was verified in the field. This study provides insights into the different physiological mechanisms and accurate evaluation methods of maize germplasm involved in drought and flooding stresses, which could be valuable for further research and breeding.


Subject(s)
Droughts , Zea mays , Catalase/metabolism , Zea mays/metabolism , Reactive Oxygen Species/metabolism , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism , Stress, Physiological , Plant Breeding , Antioxidants/metabolism , Peroxidases/genetics , Peroxidases/metabolism , Peroxidase/metabolism , Superoxide Dismutase/metabolism , Water/metabolism , Proline/metabolism , Multivariate Analysis , Sugars/metabolism
5.
BMC Neurol ; 24(1): 147, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693483

ABSTRACT

BACKGROUND: Sleep disorders are a prevalent non-motor symptom of Parkinson's disease (PD), although reliable biological markers are presently lacking. OBJECTIVES: To explore the associations between sleep disorders and serum neurofilament light chain (NfL) levels in individuals with prodromal and early PD. METHODS: The study contained 1113 participants, including 585 early PD individuals, 353 prodromal PD individuals, and 175 healthy controls (HCs). The correlations between sleep disorders (including rapid eye movement sleep behavior disorder (RBD) and excessive daytime sleepiness (EDS)) and serum NfL levels were researched using multiple linear regression models and linear mixed-effects models. We further investigated the correlations between the rates of changes in daytime sleepiness and serum NfL levels using multiple linear regression models. RESULTS: In baseline analysis, early and prodromal PD individuals who manifested specific behaviors of RBD showed significantly higher levels of serum NfL. Specifically, early PD individuals who experienced nocturnal dream behaviors (ß = 0.033; P = 0.042) and movements of arms or legs during sleep (ß = 0.027; P = 0.049) showed significantly higher serum NfL levels. For prodromal PD individuals, serum NfL levels were significantly higher in individuals suffering from disturbed sleep (ß = 0.038; P = 0.026). Our longitudinal findings support these baseline associations. Serum NfL levels showed an upward trend in early PD individuals who had a higher total RBDSQ score (ß = 0.002; P = 0.011) or who were considered as probable RBD (ß = 0.012; P = 0.009) or who exhibited behaviors on several sub-items of the RBDSQ. In addition, early PD individuals who had a high total ESS score (ß = 0.001; P = 0.012) or who were regarded to have EDS (ß = 0.013; P = 0.007) or who exhibited daytime sleepiness in several conditions had a trend toward higher serum NfL levels. CONCLUSION: Sleep disorders correlate with higher serum NfL, suggesting a link to PD neuronal damage. Early identification of sleep disorders and NfL monitoring are pivotal in detecting at-risk PD patients promptly, allowing for timely intervention. Regular monitoring of NfL levels holds promise for tracking both sleep disorders and disease progression, potentially emerging as a biomarker for evaluating treatment outcomes.


Subject(s)
Biomarkers , Neurofilament Proteins , Parkinson Disease , Sleep Wake Disorders , Humans , Parkinson Disease/blood , Parkinson Disease/diagnosis , Parkinson Disease/complications , Male , Female , Neurofilament Proteins/blood , Middle Aged , Aged , Sleep Wake Disorders/blood , Sleep Wake Disorders/diagnosis , Sleep Wake Disorders/epidemiology , Biomarkers/blood , REM Sleep Behavior Disorder/blood , REM Sleep Behavior Disorder/diagnosis , Prodromal Symptoms
6.
Environ Sci Technol ; 58(28): 12742-12753, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38959431

ABSTRACT

Short carbon chain alkanes, as typical volatile organic compounds (VOCs), have molecular structural stability and low molecular polarity, leading to an enormous challenge in the catalytic oxidation of propane. Although Ru-based catalysts exhibit a surprisingly high activity for the catalytic oxidation of propane to CO2 and H2O, active RuOx species are partially oxidized and sintered during the oxidation reaction, leading to a decrease in catalytic activity and significantly inhibiting their application in industrial processes. Herein, the Ru/Ce@Co catalyst is synthesized with a specific structure, in which cerium dioxide is dispersed in a thin layer on the surface of Co3O4, and Ru nanoparticles fall preferentially on cerium oxide with high dispersity. Compared with the Ru/CeO2 and Ru/Co3O4 catalysts, the Ru/Ce@Co catalyst demonstrates excellent catalytic activity and stability for the oxidation of propane, even under severe operating conditions, such as recycling reaction, high space velocity, a certain degree of moisture, and high temperature. Benefiting from this particular structure, the Ru/Ce@Co (5:95) catalyst with more Ce3+ species leads to the Ru species being anchored more firmly on the CeO2 surface with a low-valent state and has a strong potential for adsorption and activation of propane and oxygen, which is beneficial for RuOx species with high activity and stability. This work provides a novel strategy for designing high-efficiency Ru-based catalysts for the catalytic combustion of short carbon alkanes.


Subject(s)
Oxidation-Reduction , Catalysis , Cerium/chemistry , Propane/chemistry , Propane/analogs & derivatives , Ruthenium/chemistry
7.
Environ Sci Technol ; 58(19): 8207-8214, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38647545

ABSTRACT

Short-term exposure to air pollution is associated with a decline in cognitive function. Standardized test scores have been employed to evaluate the effects of air pollution exposure on cognitive performance. Few studies aimed to prove whether air pollution is responsible for reduced test scores; none have implemented a "gold-standard" method for assessing the association such as a randomized, double-blind intervention. This study used a "gold-standard" method─randomized, double-blind crossover─to assess whether reducing short-term indoor particle concentrations results in improved test scores in college students in Tianjin, China. Participants (n = 162) were randomly assigned to one of two similar classrooms and completed a standardized English test on two consecutive weekends. Air purifiers with active or sham (i.e., filter removed) particle filtration were placed in each classroom. The filtration mode was switched between the two test days. Linear mixed-effect models were used to evaluate the effect of the intervention mode on the test scores. The results show that air purification (i.e., reducing PM) was significantly associated with increases in the z score for combined (0.11 [95%CI: 0.02, 0.21]) and reading (0.11 [95%CI: 0.00, 0.22]) components. In conclusion, a short-term reduction in indoor particle concentration led to improved test scores in students, suggesting an improvement in cognitive function.


Subject(s)
Air Pollution, Indoor , Cross-Over Studies , Particulate Matter , Students , Humans , Double-Blind Method , Male , Female , China , Air Pollutants/analysis , Young Adult , Air Pollution
8.
Environ Sci Technol ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037090

ABSTRACT

Catalytic elimination of halogenated volatile organic compound (HVOC) emissions was still a huge challenge through conventional catalytic combustion technology, such as the formation of halogenated byproducts and the destruction of the catalyst structure; hence, more efficient catalysts or a new route was eagerly desired. In this work, crystal phase- and defect-engineered CePO4 was rationally designed and presented abundant acid sites, moderate redox ability, and superior thermal/chemical stability; the halogenated byproduct-free and stable elimination of HVOCs was achieved especially in the presence of H2O. Hexagonal and defective CePO4 with more structural H2O and Brønsted/Lewis acid sites was more reactive and durable compared with monoclinic CePO4. Based on the phase and defect engineering of CePO4, in situ diffuse reflectance infrared Fourier transform spectra (DRIFTS), and kinetic isotope effect experiments, a hydrolysis-oxidation pathway characterized by the direct involvement of H2O was proposed. Initiatively, an external electric field (5 mA) significantly accelerated the elimination of HVOCs and even 90% conversion of dichloromethane could be obtained at 170 °C over hexagonal CePO4. The structure-performance-dependent relationships of the engineered CePO4 contributed to the rational design of efficient catalysts for HVOC elimination, and this pioneering work on external electric field-assisted catalytic hydrolysis-oxidation established an innovative HVOC elimination route.

9.
Environ Res ; 252(Pt 3): 118986, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38663671

ABSTRACT

The sequencing electroreduction-electrooxidation process has emerged as a promising approach for the degradation of the chloronitrobenzenes (CNBs) due to its elimination of electro-withdrawing groups in the reduction process, facilitating further removal in the subsequent oxidation process. Herein, we developed a cathode consisting of atom Pd on a Ti plate, which enabled the electro-generation of atomic hydrogen (H*) and the efficient electrocatalytic activation of H2O2 to hydroxyl radical (•OH). Cyclic voltammetry (CV) curves and electron spin resonance (ESR) spectra verified the existence of H* and •OH. The electroreduction-electrooxidation system achieved 94.7% of 20 mg L-1 2,4-DCNB removal with a relatively low H2O2 addition (5 mM). Moreover, the inhibition rate of Photobacterium phosphoreum in the effluent decreased from 95% to 52% after the sequencing electroreduction-electrooxidation processes. It was further revealed that the H* dominated the electroreduction process and triggered the electrooxidation process. Our work sheds light on the effective removal of electron-withdrawing groups substituted aromatic contaminants from water and wastewater.


Subject(s)
Hydrogen , Nitrobenzenes , Oxidation-Reduction , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Nitrobenzenes/chemistry , Hydrogen/chemistry , Electrochemical Techniques/methods , Waste Disposal, Fluid/methods
10.
Mycoses ; 67(6): e13751, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38825584

ABSTRACT

BACKGROUND: Kerion is a severe type of tinea capitis that is difficult to treat and remains a public health problem. OBJECTIVES: To evaluate the epidemiologic features and efficacy of different treatment schemes from real-world experience. METHODS: From 2019 to 2021, 316 patients diagnosed with kerion at 32 tertiary Chinese hospitals were enrolled. We analysed the data of each patient, including clinical characteristics, causative pathogens, treatments and outcomes. RESULTS: Preschool children were predominantly affected and were more likely to have zoophilic infection. The most common pathogen in China was Microsporum canis. Atopic dermatitis (AD), animal contact, endothrix infection and geophilic pathogens were linked with kerion occurrence. In terms of treatment, itraconazole was the most applied antifungal agent and reduced the time to mycological cure. A total of 22.5% of patients received systemic glucocorticoids simultaneously, which reduced the time to complete symptom relief. Furthermore, glucocorticoids combined with itraconazole had better treatment efficacy, with a higher rate and shorter time to achieving mycological cure. CONCLUSIONS: Kerion often affects preschoolers and leads to serious sequelae, with AD, animal contact, and endothrix infection as potential risk factors. Glucocorticoids, especially those combined with itraconazole, had better treatment efficacy.


Subject(s)
Antifungal Agents , Itraconazole , Microsporum , Tinea Capitis , Humans , Child, Preschool , Antifungal Agents/therapeutic use , Male , Female , Tinea Capitis/drug therapy , Tinea Capitis/epidemiology , Tinea Capitis/microbiology , Itraconazole/therapeutic use , China/epidemiology , Microsporum/isolation & purification , Child , Infant , Glucocorticoids/therapeutic use , Treatment Outcome , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/epidemiology , Dermatitis, Atopic/microbiology , Risk Factors , Adolescent , Adult , Middle Aged , Retrospective Studies
11.
BMC Pediatr ; 24(1): 234, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566022

ABSTRACT

BACKGROUND: The rebound of influenza A (H1N1) infection in post-COVID-19 era recently attracted enormous attention due the rapidly increased number of pediatric hospitalizations and the changed characteristics compared to classical H1N1 infection in pre-COVID-19 era. This study aimed to evaluate the clinical characteristics and severity of children hospitalized with H1N1 infection during post-COVID-19 period, and to construct a novel prediction model for severe H1N1 infection. METHODS: A total of 757 pediatric H1N1 inpatients from nine tertiary public hospitals in Yunnan and Shanghai, China, were retrospectively included, of which 431 patients diagnosed between February 2023 and July 2023 were divided into post-COVID-19 group, while the remaining 326 patients diagnosed between November 2018 and April 2019 were divided into pre-COVID-19 group. A 1:1 propensity-score matching (PSM) was adopted to balance demographic differences between pre- and post-COVID-19 groups, and then compared the severity across these two groups based on clinical and laboratory indicators. Additionally, a subgroup analysis in the original post-COVID-19 group (without PSM) was performed to investigate the independent risk factors for severe H1N1 infection in post-COIVD-19 era. Specifically, Least Absolute Shrinkage and Selection Operator (LASSO) regression was applied to select candidate predictors, and logistic regression was used to further identify independent risk factors, thus establishing a prediction model. Receiver operating characteristic (ROC) curve and calibration curve were utilized to assess discriminative capability and accuracy of the model, while decision curve analysis (DCA) was used to determine the clinical usefulness of the model. RESULTS: After PSM, the post-COVID-19 group showed longer fever duration, higher fever peak, more frequent cough and seizures, as well as higher levels of C-reactive protein (CRP), interleukin 6 (IL-6), IL-10, creatine kinase-MB (CK-MB) and fibrinogen, higher mechanical ventilation rate, longer length of hospital stay (LOS), as well as higher proportion of severe H1N1 infection (all P < 0.05), compared to the pre-COVID-19 group. Moreover, age, BMI, fever duration, leucocyte count, lymphocyte proportion, proportion of CD3+ T cells, tumor necrosis factor α (TNF-α), and IL-10 were confirmed to be independently associated with severe H1N1 infection in post-COVID-19 era. A prediction model integrating these above eight variables was established, and this model had good discrimination, accuracy, and clinical practicability. CONCLUSIONS: Pediatric H1N1 infection during post-COVID-19 era showed a higher overall disease severity than the classical H1N1 infection in pre-COVID-19 period. Meanwhile, cough and seizures were more prominent in children with H1N1 infection during post-COVID-19 era. Clinicians should be aware of these changes in such patients in clinical work. Furthermore, a simple and practical prediction model was constructed and internally validated here, which showed a good performance for predicting severe H1N1 infection in post-COVID-19 era.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Humans , Child , Interleukin-10 , Influenza, Human/complications , Influenza, Human/diagnosis , Retrospective Studies , China/epidemiology , Patient Acuity , Seizures , Cough
12.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Article in English | MEDLINE | ID: mdl-33785600

ABSTRACT

The contraction of heart cells is controlled by the intermolecular signaling between L-type Ca2+ channels (LCCs) and ryanodine receptors (RyRs), and the nanodistance between them depends on the interaction between junctophilin-2 (JPH2) in the sarcoplasmic reticulum (SR) and caveolin-3 (CAV3) in the transversal tubule (TT). In heart failure, decreased expression of JPH2 compromises LCC-RyR communication leading to deficient blood-pumping power. In the present study, we found that JPH2 and CAV3 transcription was concurrently regulated by serum response factor (SRF) and myocardin. In cardiomyocytes from torpid ground squirrels, compared with those from euthermic counterparts, myocardin expression was up-regulated, which boosted both JPH2 and CAV3 expression. Transmission electron microscopic imaging showed that the physical coupling between TTs and SRs was tightened during hibernation and after myocardin overexpression. Confocal Ca2+ imaging under the whole-cell patch clamp condition revealed that these changes enhanced the efficiency of LCC-RyR intermolecular signaling and fully compensated the adaptive down-regulation of LCCs, maintaining the power of heart contraction while avoiding the risk of calcium overload during hibernation. Our finding not only revealed an essential molecular mechanism underlying the survival of hibernating mammals, but also demonstrated a "reverse model of heart failure" at the molecular level, suggesting a strategy for treating heart diseases.


Subject(s)
Calcium Signaling , Hibernation , Myocytes, Cardiac/metabolism , Animals , Caveolins/genetics , Caveolins/metabolism , Cells, Cultured , Excitation Contraction Coupling , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nuclear Proteins/blood , Nuclear Proteins/metabolism , Sciuridae , Trans-Activators/blood , Trans-Activators/metabolism
13.
J Exerc Sci Fit ; 22(4): 297-304, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38706951

ABSTRACT

Background: Probiotic supplementation has a positive effect on endurance exercise performance and body composition in athletes, but the underlying mechanisms remain unclear. Gut microbiota can provide measurable markers of immune function in athletes, and microbial composition analysis may be sensitive enough to detect stress and metabolic disorders caused by exercise. Methods: Nineteen healthy active amateur marathon runners (15 male and 4 female) with a mean age of 29.11 years volunteered to participate in this double-blind controlled study. Based on the performance of the Cooper 12-min running test (CRT), the participants were allocated into two groups to receive either a probiotic formulation comprising lactobacillus acidophilus and bifidobacterium longum (n = 10) or placebo containing maltodextrin (n = 9) for five weeks. Consistency of diet and exercise was ensured throughout the experimental period. Before and after the intervention, all participants were assessed for CRT, emotional stability and gastrointestinal symptoms, gut microbiota composition, body composition and magnetic resonance imaging (MRI) indicators of skeletal muscle microcirculation. Results: Compared to before the intervention, the probiotics group showed an increase in CRT score (2.88 ± 0.57 vs 3.01 ± 0.60 km, P<0.05), significant improvement in GSRS and GIQLI (9.20 ± 4.64 vs 7.40 ± 3.24, 118.90 ± 12.30 vs 127.50 ± 9.85, P<0.05), while these indicators remained unchanged in the control group, with a significant time-group interaction effect on gastrointestinal symptoms. Additionally, some MRI metabolic cycling indicators of the thigh skeletal muscle also changed in the probiotics group (P<0.05). Regarding microbiota abundance, the probiotics group exhibited a significant increase in the abundance of beneficial bacteria and a significant decrease in the abundance of harmful bacteria post-intervention (P<0.05). Conclusion: As a sports nutritional supplement, probiotics have the potential to improve athletic performance by optimizing the balance of gut microbiota, alleviating gastrointestinal symptoms.

14.
Glia ; 71(6): 1502-1521, 2023 06.
Article in English | MEDLINE | ID: mdl-36794533

ABSTRACT

Connexin43 (Cx43) is a major gap junction protein in glial cells. Mutations have been found in the gap-junction alpha 1 gene encoding Cx43 in glaucomatous human retinas, suggestive of the involvement of Cx43 in the pathogenesis of glaucoma. However, how Cx43 is involved in glaucoma is still unknown. We showed that increased intraocular pressure in a glaucoma mouse model of chronic ocular hypertension (COH) downregulated Cx43, which was mainly expressed in retinal astrocytes. Astrocytes in the optic nerve head where they gather and wrap the axons (optic nerve) of retinal ganglion cells (RGCs) were activated earlier than neurons in COH retinas and the alterations in astrocytes plasticity in the optic nerve caused a reduction in Cx43 expression. A time course showed that reductions of Cx43 expression were correlated with the activation of Rac1, a member of the Rho family. Co-immunoprecipitation assays showed that active Rac1, or the downstream signaling effector PAK1, negatively regulated Cx43 expression, Cx43 hemichannel opening and astrocyte activation. Pharmacological inhibition of Rac1 stimulated Cx43 hemichannel opening and ATP release, and astrocytes were identified to be one of the main sources of ATP. Furthermore, conditional knockout of Rac1 in astrocytes enhanced Cx43 expression and ATP release, and promoted RGC survival by upregulating the adenosine A3 receptor in RGCs. Our study provides new insight into the relationship between Cx43 and glaucoma, and suggests that regulating the interaction between astrocytes and RGCs via the Rac1/PAK1/Cx43/ATP pathway may be used as part of a therapeutic strategy for managing glaucoma.


Subject(s)
Glaucoma , Ocular Hypertension , Animals , Humans , Mice , Adenosine Triphosphate/metabolism , Astrocytes/metabolism , Connexin 43/genetics , Connexin 43/metabolism , Glaucoma/metabolism , Glaucoma/pathology , Ocular Hypertension/metabolism , p21-Activated Kinases/metabolism , rac1 GTP-Binding Protein/metabolism , Retinal Ganglion Cells/metabolism
15.
J Neuroinflammation ; 20(1): 304, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38110963

ABSTRACT

BACKGROUND: Inflammasomes in astrocytes have been shown to play a crucial role in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). Cannabinoid Receptor 2(CB2R), a G protein-coupled receptor (GPCR), is considered a promising therapeutic target in inflammation-related disorders. This study aims to explore the role of CB2R in regulating NOD-like receptor family pyrin domain containing 3 (NLRP3)-mediated neuroinflammation in astrocytes. METHODS: In an in vivo animal model, specific targeting of astrocytic CB2R was achieved by injecting CB2R-specific adenovirus (or fork head box g1(foxg1) adenovirus) to knock down CB2R or administering CB2R agonists, inhibitors, etc., in the substantia nigra pars compacta (SNc) of mice. A PD mouse model was established using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induction. Animal behavioral tests, western blot, immunofluorescence, and other experiments were performed to assess the loss of midbrain tyrosine hydroxylase (TH) neurons, activation of astrocytes, and activation of the NLRP3 pathway. Primary astrocytes were cultured in vitro, and NLRP3 inflammasomes were activated using 1-methyl-4-phenylpyridinium (MPP+) or lipopolysaccharide (LPS) and adenosine triphosphate (ATP). Western blot and ELISA experiments were conducted to assess the release of inflammatory factors. Transcriptomic sequencing and CUT&RUN techniques were employed to study the CB2R regulation of the foxg1 binding site on the autophagy molecule microtubule-associated protein 1 light chain 3 beta (MAP1LC3B). RESULTS: Astrocytic CB2R knockdown impaired the motor abilities of MPTP-induced mice, exacerbated the loss of TH neurons, and induced activation of the NLRP3/Caspase-1/interleukin 1 (IL-1ß) pathway. Activation of CB2R significantly alleviated motor impairments in mice while reducing NLRP3 deposition on astrocytes. In vitro cell experiments showed that CB2R activation attenuated the activation of the NLRP3/Caspase-1/IL-1ß pathway induced by LPS + ATP or MPP+. Additionally, it inhibited the binding of foxg1 to MAP1LC3B, increased astrocytic autophagy levels, and facilitated NLRP3 degradation through the autophagy-lysosome pathway. CONCLUSION: Activation of CB2R on astrocytes effectively mitigates NLRP3-mediated neuroinflammation and ameliorates the disease characteristics of PD in mice. CB2R represents a potential therapeutic target for treating PD.


Subject(s)
NLR Family, Pyrin Domain-Containing 3 Protein , Parkinson Disease , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Parkinson Disease/pathology , Neuroinflammatory Diseases , Astrocytes/metabolism , Lipopolysaccharides/pharmacology , Caspase 1/metabolism , Autophagy , Adenosine Triphosphate/pharmacology , Mice, Inbred C57BL , Disease Models, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Dopaminergic Neurons , Nerve Tissue Proteins
16.
HIV Med ; 24(3): 344-353, 2023 03.
Article in English | MEDLINE | ID: mdl-36101972

ABSTRACT

OBJECTIVES: The objectives of this study were to analyze the relationship between serum globulin levels and immune restoration and HIV reservoir size during long-term antiretroviral therapy (ART). METHODS: We enrolled 13 patients living with HIV who had been receiving ART for 5 years. We measured levels of serum globulin, cell-associated (CA) HIV DNA and RNA, and p24 antibody at 0, 1, 3, and 5 years of ART. CD38 and human leukocyte antigen - DR isotype (HLA-DR) were used as activation markers for T-cell activation. Serum concentrations of the inflammatory cytokines interferon gamma-inducible protein (IP)-10 and soluble CD163 (sCD163) were detected by enzyme-linked immunosorbent assay. We analyzed the relationship between serum globulin levels, HIV reservoir size, immune restoration, T-cell immune activation, and inflammatory levels during long-term ART. RESULTS: Our data showed that serum globulin levels in people living with HIV were higher than in healthy controls and significantly decreased during the first year of ART. Serum globulin levels during long-term ART were positively correlated with CA HIV DNA, CA HIV RNA, p24 antibody levels, and CD8+ T-cell counts and negatively correlated with CD4+ T-cell counts and CD4/CD8 ratios. Moreover, serum globulin levels were positively correlated with CD4+ and CD8+ T-cell activation and the concentrations of inflammatory biomarkers IP-10 and sCD163 during long-term ART. CONCLUSIONS: Our findings suggest that serum globulin levels may be associated with HIV reservoir size and immune restoration during long-term ART.


Subject(s)
HIV Infections , Immune Reconstitution , Humans , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , RNA , Viral Load , Lymphocyte Activation
17.
J Cardiovasc Pharmacol ; 82(4): 327-332, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37506376

ABSTRACT

ABSTRACT: To date, no studies have specifically examined the efficacy of P2Y12 inhibitor monotherapy in patients with acute coronary syndrome (ACS) exhibiting a high risk of gastrointestinal (GI) bleeding following percutaneous coronary intervention (PCI). This was a retrospective cohort study of ACS exhibiting a high GI bleeding risk after PCI admitted to the Affiliated Hospital of the Jiangnan University from August 2016 to December 2019. Of the 308 enrolled patients, 269 were found eligible and were assigned to the ticagrelor monotherapy (TIC) arm (n = 128) and to ticagrelor plus aspirin (TIC + ASP) arm (n = 141) treatment for a 1-year period. The primary study outcome was a composite end point, including bleeding academic research consortium (BARC) type 2, 3, or 5 bleeding and adverse cardiac or cerebrovascular events; 8 (6.3%) in the TIC group and 14 (9.9%) in the combination treatment group reached the primary ischemic end point within 1 year with no significant difference between these groups. BARC type 2, 3, and 5 bleeding events affected significantly more patients in the combination group relative to the TIC group (38 [27.0%] vs. 11 [8.6%], P < 0.001). As the follow-up interval was prolonged, the cumulative BARC type 2, 3, and 5 bleeding incidence in the TIC group remained significantly below than that in the combination treatment group ( P < 0.05). These results indicate that TIC is associated with a lower risk of clinically relevant bleeding events among ACS with a high risk of GI bleeding after PCI relative to combination TIC + ASP treatment, although ischemic outcomes in these 2 groups were similar.


Subject(s)
Acute Coronary Syndrome , Percutaneous Coronary Intervention , Humans , Ticagrelor/adverse effects , Aspirin/adverse effects , Platelet Aggregation Inhibitors/adverse effects , Acute Coronary Syndrome/therapy , Acute Coronary Syndrome/drug therapy , Retrospective Studies , Percutaneous Coronary Intervention/adverse effects , Percutaneous Coronary Intervention/methods , Drug Therapy, Combination , Gastrointestinal Hemorrhage/chemically induced , Gastrointestinal Hemorrhage/diagnosis , Gastrointestinal Hemorrhage/epidemiology , Ischemia/drug therapy , Treatment Outcome
18.
Cell Biol Toxicol ; 39(6): 2551-2568, 2023 12.
Article in English | MEDLINE | ID: mdl-37957486

ABSTRACT

BACKGROUND: The current study probed into how tumor cell-derived exosomes (Exos) mediated hsa_circ_0001739/lncRNA AC159540.1 to manipulate microRNA (miR)-218-5p/FTO-N6-methyladenosine (m6A)/MYC signal axis in liver metastasis in colorectal cancer (CRC). METHODS: hsa_circ_0001739 and lncRNA AC159540.1 were identified as the upstream regulator of miR-218-5p using ENCORI and LncBase databases. Expression patterns of miR-218-5p, hsa_circ_0001739, lncRNA AC159540.1, FTO, and MYC were detected, accompanied by loss-and-gain-of function assays to examine their effects on CRC cell biological functions. SW480 cells-derived Exos were purified, followed by in vitro studies to uncover the effect of hsa_circ_0001739/lncRNA AC159540. RESULTS: miR-218-5p was downregulated while hsa_circ_0001739/lncRNA AC159540.1 was upregulated in CRC tissues and cells. Silencing of hsa_circ_0001739/lncRNA AC159540.1 restrained the malignant phenotypes of CRC cells. Exos-mediated hsa_circ_0001739/lncRNA AC159540.1 competitively inhibited miR-218-5p to elevate FTO and MYC. The inducing role of Exos-mediated hsa_circ_0001739/lncRNA AC159540.1 in CRC was also validated in vivo. CONCLUSION: Conclusively, Exos-mediated circ_0001739/lncRNA AC159540.1 regulatory network is critical for CRC, offering a theoretical basis for CRC treatment.


Subject(s)
Colorectal Neoplasms , Exosomes , Liver Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Exosomes/genetics , Liver Neoplasms/genetics , MicroRNAs/genetics , Colorectal Neoplasms/genetics , Cell Proliferation/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO
19.
Environ Sci Technol ; 57(17): 7086-7096, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37071842

ABSTRACT

Crystal engineering of metal oxide supports represents an emerging strategy to improve the catalytic performance of noble metal catalysts in catalytic oxidation of chlorinated volatile organic compounds (CVOCs). Herein, Pt catalysts on a TiO2 support with different crystal phases (rutile, anatase, and mixed phase (P25)) were prepared for catalytic oxidation of 1,2-dichloroethane (DCE). The Pt catalyst on P25-TiO2 (Pt/TiO2-P) showed optimal activity, selectivity, and stability, even under high-space velocity and humidity conditions. Due to the strong interaction between Pt and P25-TiO2 originating from the more lattice defects of TiO2, the Pt/TiO2-P catalyst possessed stable Pt0 and Pt2+ species during DCE oxidation and superior redox property, resulting in high activity and stability. Furthermore, the Pt/TiO2-P catalyst possessed abundant hydroxyl groups, which prompted the removal of chlorine species in the form of HCl and significantly decreased the selectivity of vinyl chloride (VC) as the main byproduct. On the other hand, the Pt/TiO2-P catalyst exhibited a different reaction path, in which the hydroxyl groups on its surface activated DCE to form VC and enolic species, besides the lattice oxygen of TiO2 for the Pt catalysts on rutile and anatase TiO2. This work provides guidance for the rational design of catalysts for CVOCs.


Subject(s)
Titanium , Vinyl Chloride , Titanium/chemistry , Oxidation-Reduction , Ethylene Dichlorides/chemistry
20.
BMC Infect Dis ; 23(1): 893, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38124099

ABSTRACT

BACKGROUND: Antiretroviral therapy (ART) can reduce viral load in individuals infected with human immunodeficiency virus (HIV); however, some HIV-infected individuals still cannot achieve optimal immune recovery even after ART. Hence, we described the profile of peripheral immune cells and explored the association with disease progression in patients infected with HIV-1. METHODS: Mass cytometry analysis was used to characterize the circulating immune cells of 20 treatment-naïve (TNs), 20 immunological non-responders (INRs), 20 immunological responders (IRs), and 10 healthy controls (HCs). Correlation analysis was conducted between cell subpopulation percentages and indicators including HIV-1 cell-associated (CA)-RNA, DNA, CD4+ T cell count, and CD4/CD8 ratio. RESULTS: Global activation, immunosenescence, and exhaustion phenotypes were observed in myeloid cells and T cells from individuals with HIV-1 infection. We also found that specific subsets or clusters of myeloid, CD4+ T, and CD8+ T cells were significantly lost or increased in TN individuals, which could be partially restored after receiving ART. The percentages of several subpopulations correlated with HIV-1 CA-RNA, DNA, CD4+ T cell count, and CD4/CD8 ratio, suggesting that changes in immune cell composition were associated with therapeutic efficacy. CONCLUSION: These data provide a complete profile of immune cell subpopulations or clusters that are associated with disease progression during chronic HIV-1 infection, which will improve understanding regarding the mechanism of incomplete immune recovery in INRs.


Subject(s)
HIV Infections , HIV-1 , Humans , CD8-Positive T-Lymphocytes , RNA , Disease Progression , DNA , CD4-Positive T-Lymphocytes , Viral Load , CD4 Lymphocyte Count
SELECTION OF CITATIONS
SEARCH DETAIL