Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Cell Sci ; 137(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38587461

ABSTRACT

Mitochondrial fission is a tightly regulated process involving multiple proteins and cell signaling. Despite extensive studies on mitochondrial fission factors, our understanding of the regulatory mechanisms remains limited. This study shows the critical role of a mitochondrial GTPase, GTPBP8, in orchestrating mitochondrial fission in mammalian cells. Depletion of GTPBP8 resulted in drastic elongation and interconnectedness of mitochondria. Conversely, overexpression of GTPBP8 shifted mitochondrial morphology from tubular to fragmented. Notably, the induced mitochondrial fragmentation from GTPBP8 overexpression was inhibited in cells either depleted of the mitochondrial fission protein Drp1 (also known as DNM1L) or carrying mutated forms of Drp1. Importantly, downregulation of GTPBP8 caused an increase in oxidative stress, modulating cell signaling involved in the increased phosphorylation of Drp1 at Ser637. This phosphorylation hindered the recruitment of Drp1 to mitochondria, leading to mitochondrial fission defects. By contrast, GTPBP8 overexpression triggered enhanced recruitment and assembly of Drp1 at mitochondria. In summary, our study illuminates the cellular function of GTPBP8 as a pivotal modulator of the mitochondrial division apparatus, inherently reliant on its influence on Drp1.


Subject(s)
Dynamins , Microtubule-Associated Proteins , Mitochondria , Mitochondrial Dynamics , Monomeric GTP-Binding Proteins , Humans , Dynamins/metabolism , Dynamins/genetics , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Mitochondria/metabolism , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Oxidative Stress , Phosphorylation , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism
2.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673905

ABSTRACT

Primary biliary cholangitis (PBC) is a cholestatic liver disease characterized by immune-mediated injury to small bile ducts. Although PBC is an autoimmune disease, the effectiveness of conventional immunosuppressive therapy is disappointing. Nearly 40% of PBC patients do not respond to the first-line drug UDCA. Without appropriate intervention, PBC patients eventually progress to liver cirrhosis and even death. There is an urgent need to develop new therapies. The gut-liver axis emphasizes the interconnection between the gut and the liver, and evidence is increasing that gut microbiota and bile acids play an important role in the pathogenesis of cholestatic diseases. Dysbiosis of gut microbiota, imbalance of bile acids, and immune-mediated bile duct injury constitute the triad of pathophysiology in PBC. Autoimmune cholangitis has the potential to be improved through immune system modulation. Considering the failure of conventional immunotherapies and the involvement of gut microbiota and bile acids in the pathogenesis, targeting immune factors associated with them, such as bile acid receptors, microbial-derived molecules, and related specific immune cells, may offer breakthroughs. Understanding the gut microbiota-bile acid network and related immune dysfunctions in PBC provides a new perspective on therapeutic strategies. Therefore, we summarize the latest advances in research of gut microbiota and bile acids in PBC and, for the first time, explore the possibility of related immune factors as novel immunotherapy targets. This article discusses potential therapeutic approaches focusing on regulating gut microbiota, maintaining bile acid homeostasis, their interactions, and related immune factors.


Subject(s)
Bile Acids and Salts , Gastrointestinal Microbiome , Liver Cirrhosis, Biliary , Humans , Bile Acids and Salts/metabolism , Liver Cirrhosis, Biliary/immunology , Liver Cirrhosis, Biliary/therapy , Liver Cirrhosis, Biliary/metabolism , Liver Cirrhosis, Biliary/microbiology , Animals , Dysbiosis/immunology
3.
Int J Mol Sci ; 25(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338820

ABSTRACT

Bile acid diarrhea (BAD) is a multifaceted intestinal disorder involving intricate molecular mechanisms, including farnesoid X receptor (FXR), fibroblast growth factor receptor 4 (FGFR4), and Takeda G protein-coupled receptor 5 (TGR5). Current diagnostic methods encompass bile acid sequestrants (BAS), 48-h fecal bile acid tests, serum 7α-hydroxy-4-cholesten-3-one (C4), fibroblast growth factor 19 (FGF19) testing, and 75Selenium HomotauroCholic acid test (75SeHCAT). Treatment primarily involves BAS and FXR agonists. However, due to the limited sensitivity and specificity of current diagnostic methods, as well as suboptimal treatment efficacy and the presence of side effects, there is an urgent need to establish new diagnostic and treatment methods. While prior literature has summarized various diagnostic and treatment methods and the pathogenesis of BAD, no previous work has linked the two. This review offers a molecular perspective on the clinical diagnosis and treatment of BAD, with a focus on FXR, FGFR4, and TGR5, emphasizing the potential for identifying additional molecular mechanisms as treatment targets and bridging the gap between diagnostic and treatment methods and molecular mechanisms for a novel approach to the clinical management of BAD.


Subject(s)
Bile Acids and Salts , Precision Medicine , Humans , Precision Medicine/adverse effects , Diarrhea/diagnosis , Diarrhea/drug therapy , Fibroblast Growth Factors/metabolism , Hypolipidemic Agents/therapeutic use
4.
Environ Sci Technol ; 57(48): 20138-20147, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37934470

ABSTRACT

Microplastics (MPs) pollution and dissolved organic matter (DOM) affect soil quality and functions. However, the effect of MPs on DOM and underlying mechanisms have not been clarified, which poses a challenge to maintaining soil health. Under environmentally relevant conditions, we evaluated the major role of polypropylene particles at four micron-level sizes (20, 200, and 500 µm and mixed) in regulating changes in soil DOM content. We found that an increase in soil aeration by medium and high-intensity (>0.5%) MPs may reduce NH4+ leaching by accelerating soil nitrification. However, MPs have a positive effect on soil nutrient retention through the adsorption of PO43- (13.30-34.46%) and NH4+ (9.03-19.65%) and their leached dissolved organic carbon (MP-leached dissolved organic carbon, MP-DOC), thereby maintaining the dynamic balance of soil nutrients. The regulating ion (Ca2+) is also an important competitor in the MP-DOM adsorption system, and changes in its intensity are dynamically involved in the adsorption process. These findings can help predict the response of soil processes, especially nutrient cycling, to persistent anthropogenic stressors, improve risk management policies on MPs, and facilitate the protection of soil health and function, especially in future agricultural contexts.


Subject(s)
Microplastics , Soil , Dissolved Organic Matter , Plastics , Carbon , China
5.
Plant Dis ; 2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36774566

ABSTRACT

Tomato (Solanum lycopersicum L.) is an important greenhouse and field-grown vegetable. During 2019 to 2021, a new bacterial pith necrosis broke out in tomato producing areas in China. The disease incidence rate in the field was approximately 10% to 30% in a few tomato planting areas of Guangdong province, and even 100% in Dianbai distinct, Maoming city. Diseased plants showed yellowing of the lower leaves, brown vascular tissues, and wilting along with brown necrotic spots and a large number of adventitious roots on the stem. Diseased plants were collected, and short fragments of the diseased stems were sterilized with 75% alcohol for 2 minutes, washed with sterile water twice, and stripped the cortex (Fang 1998). Dilutions of xylem specimen soaking solution were plated onto the TTC medium (peptone 10.0 g, acid hydrolyzed casein 1.0 g, glucose 5.0 g, agar 15.0 g, distilled water 1000 mL, 0.5% 2, 3, 5-triphenyltetrazolium chloride, pH7.0), and cultured at 28℃ for 24 h. Three pink single colonies (A2 from Guangzhou (113°21' E, 23°9' N), Guangdong, and K6, and K7 from Maoming (110°55' E, 21°25' N), Guangdong) were selected and purified. Strains A2, K6, and K7 were Gram-negative, motile, and showed white fluidal colonies with pink center on TTC medium, and white, round, and smooth-surface colonies on NA medium (peptone 10 g, beef extract 3 g, sodium chloride 5 g, agar 15 g, distilled water 1000 mL, pH7.0) at 28℃ for 24 h. Three strains could utilize citrate, sorbitol, lactose and arginine, and were negative for methylred reaction test, determination of phenylalanine amino acid deaminase, lysine decarboxylase, urease, soluble starch decomposition and gelatin liquefaction, whereas were positive for Voges-Proskauer test, which conformed to the characteristics of genus Enterobacter (Davin-Regli et al. 2019). To determine the species of the Enterobacter isolates, partial sequences 16S rDNA, gyrB, and rpoB of strain A2, K6, and K7 were amplified. The PCR products were purified, sequenced, and deposited to GenBank. The BLASTN analysis of 16S rDNA, rpoB and gyrB sequences showed strain A2 (MW785888, OL364948, OL364943) was 99.20%, 99.17% and 98.57% identity with E. roggenkampii DSM16690, respectively, strain K6 (MW785890, OL364950, OL364945) was 99.73%, 99.63%, 99.63% identity with E. cloacae complex sp. N13-01531, and strain K7 (MW785893, OL364951, OL364946) was 99.8%, 98.81%, 98.99% identity with the E. roggenkampii Ed-982 and Ek140. Nucleotide sequences of 3 strains were aligned using ClustalW program, and neighbor-joining method (NJ) was used in the construction of a phylogenetic tree using MEGA7 program. Phylogenetic trees based on gyrB sequence, rpoB sequence, and the concatenated sequence of 16S rDNA-rpoB-gyrB and rpoB-gyrB showed strain A2 and K7 were clustered to E. roggenkampii, strain K6 was clustered to E. cloacae complex sp. The roots of tomato material 'Moneymaker' at stage of 4-5 true leaves were cut and irrigated 10 mL bacterial suspension (OD600=0.6) of strains A2, K6, and K7, respectively. As a control, the tomato roots were treated with 10 mL sterile water. All plants were incubated at 30°C. The experiments were conducted with 20 tomato seedlings for each tested strain and control, and repeated twice. All plants inoculated showed yellowing in the lower leaves 6-7 days after inoculation (DAI), subsequently the stems of some plants were rotten, along with bacterial pus in the internodes. The plants wilted, and stems were hollow 20 DAI, which is similar to the field symptoms. No symptoms were observed in control plants. Strains were successfully reisolated from wilting plants, and identified as A2, K6, and K7, respectively, based on gyrB sequence analysis, fulfilling Koch's postulates. Zhou et al. (2021) reported that E. roggenkampii caused bacterial wilt of mulberry in Guangxi, China. Chen et al. (2021) reported E. asburiae caused tomatoes pith necrosis in Fujian and Zhejiang, China. To our knowledge, this is the first report of E. roggenkampii and E. cloacae complex sp. causing bacterial pith necrosis of tomato. Further research would focus on exploring the pathogenic mechanism of the pathogen, and providing reference of controlling the disease.

6.
J Environ Manage ; 345: 118781, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37611520

ABSTRACT

The hazards caused by Pb pollution have received worldwide attention. Phosphogypsum (PG) and titanium gypsum (TG) have the disadvantage of limited adsorption capacity and poor dispersion when used as heavy metal adsorbents on their own. The excellent pore and electron transfer capacity of biochar makes it possible to combine with PG and TG to solidify/stabilize Pb2+. In this study, the mechanism of Pb2+ adsorption/immobilization by rice husk biochar (BC) combined with PG/TG was investigated in terms of both mineral formation and electron transfer rate. The removal rate of Pb2+ by BC composite PG (BC/PG-Pb) or TG (BC/TG-Pb) was as high as 97%-98%, an increase of 120.9% and 122.5% over BC. Adsorption kinetics and mineral precipitation results indicate that the main removal of Pb2+ from BC/PG-Pb and BC/TG-Pb is achieved by PG/TG induced Pb-sulfate and Pb-phosphate formation. The addition of PG/TG significantly enhances the formation of stable Pb-minerals on the biochar surface, with the proportion of non-bioaccessible forms exceeding 50%. The four-step extraction results confirm that P and F in PG/TG are key in facilitating the conversion of Pb minerals to pyromorphite. The rich pore structure of biochar not only disperses the easily agglomerated PG/TG onto the biochar surface, but also attracts Pb2+ for uniformly dispersed precipitation. Furthermore, the excellent electrical conductivity and smooth electron transfer channels of biochar facilitate the reaction rate of Pb2+ mineralization. Overall, the use of biochar in combination with PG/TG is a promising technology for the combination of solid waste resourceisation and Pb remediation.


Subject(s)
Calcium Sulfate , Titanium , Lead , Electrons , Charcoal/chemistry , Minerals , Adsorption , Kinetics
7.
Mol Cell Biochem ; 477(3): 897-914, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35079926

ABSTRACT

Neural stem cells (NSCs) are responsible for maintaining the nervous system and repairing damages. Utility of NSCs could provide a novel solution to treat neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. However, we have no idea the exact phenotypic and functional characteristics of NSCs and their precise role in geriatric neurological and aging-related diseases. In this study, C57BL/6 mice were used to isolate and identify CD133+GFAP+CD117+Sca1+ cells in the hippocampal dentate gyrus region of the mouse brain as a novel neural stem cell population, in terms of cell phenotype, self-renewal capacity, and differentiation capability. With increasing in aging, the function, total cell number, and self-renewal capacity of CD133+GFAP+CD117+Sca1+ cells decreased, and the activity of differentiated cells also decreased. Meanwhile, we investigated differentially expressed genes in order to further classify their gene signature and pathways associated with their functional changes. Taken together, these findings demonstrate the existence of a rare population of NSCs in the hippocampal dentate gyrus region. Identification of specific NSCs offers ample opportunities for alleviating neural diseases.


Subject(s)
AC133 Antigen/metabolism , Cell Differentiation , Dentate Gyrus/metabolism , Glial Fibrillary Acidic Protein/metabolism , Neural Stem Cells/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Animals , Dentate Gyrus/cytology , Mice , Neural Stem Cells/cytology
8.
Gen Comp Endocrinol ; 325: 114054, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35580689

ABSTRACT

The insulin-like androgenic gland hormone gene (IAG) of crustaceans plays pivotal roles in the regulation of sex differentiation. MicroRNAs (miRNAs) are a class of short, non-coding RNAs that function as post-transcriptional gene regulators. However, little information about the regulatory relationship between miRNA and Macrobrachium rosenbergii IAG (MrIAG) were exposed. In this study, we used the 3' untranslated region (UTR) of MrIAG to predict potential target sites of miRNAs. The results showed that miR-184 has one target site in the 3'UTR of MrIAG. Dual-luciferase report assay in vitro confirmed that miR-184 can significantly down-regulate MrIAG expression. Besides, we constructed mutant plasmids of 3'UTR of MrIAG. The result displayed that after co-transfection of mutant plasmids and miR-184 agomir, the activity of luciferase was not affected compared to the control. These results indicated that miR-184 could directly regulate MrIAG. In addition, we found that overexpression of miR-184 in M. rosenbergii can lead to significant changes in the transcription level of genes. Compared with control group, we identified 1510 differentially expressed genes (DEGs) in the miR-184 injection group. Some DEGs were involved in sex differentiation, gonad development, growth and molting were found. qRT-PCR verification was performed on eight DEGs randomly, and the results showed that the expression level of sex-, growth-, and metabolism-related genes changed significantly after MrIAG gene knockdown. Collectively, findings from this study suggest that miR-184, by mediating IAG expression, may be involved in many physiological processes in M. rosenbergii. The current study lays a basic understanding for short-term silencing of MrIAG with miR-184, and facilitates miRNA function analysis in M. rosenbergii in future.


Subject(s)
MicroRNAs , Palaemonidae , 3' Untranslated Regions , Androgens/metabolism , Animals , Fresh Water , Gene Expression Profiling , Gene Knockdown Techniques , Larva/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Palaemonidae/genetics , Palaemonidae/metabolism , Transcriptome
9.
Angew Chem Int Ed Engl ; 61(41): e202209580, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-35894110

ABSTRACT

Halogenation of terminal of acceptors has been shown to give dramatic improvements in power conversion efficiencies (PCEs) of organic solar cells (OSCs). Similar significant results could be expected from the halogenation of the central units of state-of-the-art Y-series acceptors. Herein, a pair of acceptors, termed CH6 and CH4, featuring a conjugation-extended phenazine central unit with and without fluorination, have been synthesized. The fluorinated CH6 has enhanced molecular interactions and crystallinity, superior fibrillar network morphology and improved charge generation and transport in blend films, thus affording a higher PCE of 18.33 % for CH6-based binary OSCs compared to 16.49 % for the non-fluorinated CH4. The new central site offers further opportunities for structural optimization of Y-series molecules to afford better-performed OSCs and reveals the effectiveness of fluorination on central units.

10.
Small ; 17(48): e2007431, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33728756

ABSTRACT

Recent research shows that the continuing importance of carbon anode materials plays an important role in the development of sodium-ion batteries. Nevertheless, the practical deployment of sodium-ion batteries still faces many challenges such as mediocre sodium storage capability and short cycle life. Therefore, it is imperative to explore improvement methods to boost their competitiveness. Herein, various nanoengineering strategies, including nanostructure design, defect and heteroatom doping, and nanocomposite optimization, are proposed as reliable and effective approaches to improve electrochemical performances and structural stability of carbon-based anode materials for sodium-ion batteries (SIBs). The feasibility of nanoengineering is highlighted as a promising approach to develop next-generation carbon materials for sodium-ion batteries.

11.
Eur J Nutr ; 60(6): 3375-3386, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33619628

ABSTRACT

PURPOSE: It is hypothesized that vitamin B12 may prevent tumor initiation during the early stage of carcinogenesis such as esophageal precancerous lesions (EPL), whereas an excessive level may promote tumor progression during the later stages of carcinogenesis. This study aimed to determine the role of vitamin B12 in EPL by detecting vitamin B12-related markers in both blood and diet. METHODS: This case-control study based on 3-day duplicated diet samples was conducted in a high-risk area of Huai'an, China. A 100 EPL cases and 100 healthy controls matched by gender, age (± 2 years) and villages were included. Dietary intake of vitamin B12 and cobalt, plasma cobalt level, the serum levels of vitamin B12 and transcobalamin II (TC II) were quantitatively analyzed. RESULTS: Dietary vitamin B12 intake (p for trend = 0.384) and plasma cobalt level (p for trend = 0.253) were not associated with EPL risk, but high dietary cobalt intake (p for trend = 0.034), increased serum levels of vitamin B12 (p for trend = 0.036) and TC II (p for trend < 0.001) were significantly associated with the reduced EPL risk. However, the significant negative association between dietary cobalt intake, plasma cobalt level or serum vitamin B12 level and EPL was only found in female or male subjects. CONCLUSION: Excellent transport capability of bio-active vitamin B12 in vivo and adequate levels of vitamin B12 and cobalt may play preventive roles in EPL. Additionally, the association between vitamin B12, cobalt and the risk of EPL may vary in different genders.


Subject(s)
Precancerous Conditions , Vitamin B 12 , Case-Control Studies , Diet , Female , Humans , Male , Precancerous Conditions/prevention & control , Vitamins
12.
J Neuroeng Rehabil ; 18(1): 137, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526058

ABSTRACT

BACKGROUND: Most stroke survivors have sustained upper limb impairment in their distal joints. An electromyography (EMG)-driven wrist/hand exoneuromusculoskeleton (WH-ENMS) was developed previously. The present study investigated the feasibility of a home-based self-help telerehabilitation program assisted by the aforementioned EMG-driven WH-ENMS and its rehabilitation effects after stroke. METHODS: Persons with chronic stroke (n = 11) were recruited in a single-group trial. The training progress, including the training frequency and duration, was telemonitored. The clinical outcomes were evaluated using the Fugl-Meyer Assessment (FMA), Action Research Arm Test (ARAT), Wolf Motor Function Test (WMFT), Motor Functional Independence Measure (FIM), and Modified Ashworth Scale (MAS). Improvement in muscle coordination was investigated in terms of the EMG activation level and the Co-contraction Index (CI) of the target muscles, including the abductor pollicis brevis (APB), flexor carpi radialis-flexor digitorum (FCR-FD), extensor carpi ulnaris-extensor digitorum (ECU-ED), biceps brachii (BIC), and triceps brachii (TRI). The movement smoothness and compensatory trunk movement were evaluated in terms of the following two kinematic parameters: number of movement units (NMUs) and maximal trunk displacement (MTD). The above evaluations were conducted before and after the training. RESULTS: All of the participants completed the home-based program with an intensity of 63.0 ± 1.90 (mean ± SD) min/session and 3.73 ± 0.75 (mean ± SD) sessions/week. After the training, motor improvements in the entire upper limb were found, as indicated by the significant improvements (P < 0.05) in the FMA, ARAT, WMFT, and MAS; significant decreases (P < 0.05) in the EMG activation levels of the APB and FCR-FD; significant decreases (P < 0.05) in the CI of the ECU-ED/FCR-FD, ECU-ED/BIC, FCR-FD/APB, FCR-FD/BIC, FCR-FD/TRI, APB/BIC and BIC/TRI muscle pairs; and significant reductions (P < 0.05) in the NMUs and MTD. CONCLUSIONS: The results suggested that the home-based self-help telerehabilitation program assisted by EMG-driven WH-ENMS is feasible and effective for improving the motor function of the paretic upper limb after stroke. Trial registration ClinicalTrials.gov. NCT03752775; Date of registration: November 20, 2018.


Subject(s)
Robotics , Stroke Rehabilitation , Stroke , Telerehabilitation , Electromyography , Humans , Stroke/complications , Treatment Outcome , Upper Extremity , Wrist
13.
Water Sci Technol ; 83(10): 2377-2388, 2021 May.
Article in English | MEDLINE | ID: mdl-34032616

ABSTRACT

Coagulation kinetics and floc properties are of great fundamental and practical importance in the field of water treatment. To investigate the performance of Fe(VI) and Fe(III) salt on particle coagulation, Malvern Mastersizer 2000 was employed to continuously and simultaneously monitor the kaolin floc size and structure change, and population balance modeling was used to investigate the coagulation mechanism. The results show dosage increase had positive effect on collision efficiency and floc strength and negative effect on restructure rate. Low shear rate resulted in higher collision efficiency and stronger floc. Low water temperature had a pronounced detrimental effect on coagulation kinetics. Temperature increase showed the most significant positive effect on collision efficiency, floc strength and restructure rate. The optimum pH zone for the coagulation was found to be between 6 and 8. Further pH increase lowered the collision efficiency and floc strength and increased the restructure rate. FeCl3 resulted in a larger ratio of the mass to volume of kaolin flocs (compactness) than those induced by ferrate.


Subject(s)
Ferric Compounds , Water Purification , Flocculation , Kaolin , Water
14.
Angew Chem Int Ed Engl ; 60(50): 26246-26253, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34590399

ABSTRACT

The development of high-performance anode materials for potassium-based energy storage devices with long-term cyclability requires combined innovations from rational material design to electrolyte optimization. A three-dimensional K+ -pre-intercalated Ti3 C2 Tx MXene with enlarged interlayer distance was constructed for efficient electrochemical potassium-ion storage. We found that the optimized solvation structure of the concentrated ether-based electrolyte leads to the formation of a thin and inorganic-rich solid electrolyte interphase (SEI) on the K+ -pre-intercalated Ti3 C2 Tx electrode, which is beneficial for interfacial stability and reaction kinetics. As a proof of concept, 3D K+ -Ti3 C2 Tx //activated carbon (AC) potassium-ion hybrid capacitors (PIHCs) were assembled, which exhibited promising electrochemical performances. These results highlight the significant roles of both rational structure design and electrolyte optimization for highly reactive MXene-based anode materials in energy storage devices.

15.
J Neuroeng Rehabil ; 16(1): 64, 2019 06 03.
Article in English | MEDLINE | ID: mdl-31159822

ABSTRACT

BACKGROUND: Different mechanical supporting strategies to the joints in the upper extremity (UE) may lead to varied rehabilitative effects after stroke. This study compared the rehabilitation effectiveness achieved by electromyography (EMG)-driven neuromuscular electrical stimulation (NMES)-robotic systems when supporting to the distal fingers and to the proximal (wrist-elbow) joints. METHODS: Thirty subjects with chronic stroke were randomly assigned to receive motor trainings with NMES-robotic support to the finger joints (hand group, n = 15) and with support to the wrist-elbow joints (sleeve group, n = 15). The training effects were evaluated by the clinical scores of Fugl-Meyer Assessment (FMA), Action Research Arm Test (ARAT), and Modified Ashworth Scale (MAS) before and after the trainings, as well as 3 months later. The cross-session EMG monitoring of EMG activation level and co-contraction index (CI) were also applied to investigate the recovery progress of muscle activations and muscle coordination patterns through the training sessions. RESULTS: Significant improvements (P < 0.05) in FMA full score, FMA shoulder/elbow (FMA-SE) and ARAT scores were found in both groups, whereas significant improvements (P < 0.05) in FMA wrist/hand (FMA-WH) and MAS scores were only observed in the hand group. Significant decrease of EMG activation levels (P < 0.05) of UE flexors was observed in both groups. Significant decrease in CI values (P < 0.05) was observed in both groups in the muscle pairs of biceps brachii and triceps brachii (BIC&TRI) and the wrist-finger flexors (flexor carpi radialis-flexor digitorum) and TRI (FCR-FD&TRI). The EMG activation levels and CIs of the hand group exhibited faster reductions across the training sessions than the sleeve group (P < 0.05). CONCLUSIONS: Robotic supports to either the distal fingers or the proximal elbow-wrist could achieve motor improvements in UE. The robotic support directly to the distal fingers was more effective than to the proximal parts in improving finger motor functions and in releasing muscle spasticity in the whole UE. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov , identifier NCT02117089; date of registration: April 10, 2014. https://clinicaltrials.gov/ct2/show/NCT02117089.


Subject(s)
Exoskeleton Device , Stroke Rehabilitation/instrumentation , Adult , Aged , Electromyography , Female , Humans , Male , Middle Aged , Stroke Rehabilitation/methods , Treatment Outcome , Upper Extremity
16.
Angew Chem Int Ed Engl ; 55(51): 15925-15928, 2016 12 19.
Article in English | MEDLINE | ID: mdl-27879049

ABSTRACT

The metal sulfide-carbon nanocomposite is a new class of anode material for sodium ion batteries, but its development is restricted by its relative poor rate ability and cyclic stability. Herein, we report the use of double-helix structure of carrageenan-metal hydrogels for the synthesis of 3D metal sulfide (Mx Sy ) nanostructure/carbon aerogels (CAs) for high-performance sodium-ion storage. The method is unique, and can be used to make multiple Mx Sy /CAs (such as FeS/CA, Co9 S8 /CA, Ni3 S4 /CA, CuS/CA, ZnS/CA, and CdS/CA) with ultra-small nanoparticles and hierarchical porous structure by pyrolyzing the carrageenan-metal hydrogels. The as-prepared FeS/CA exhibits a high reversible capacity and excellent cycling stability (280 mA h-1 at 0.5 A g-1 over 200 cycles) and rate performance (222 mA h-1 at 5 A g-1 ) when used as the anode material for sodium-ion batteries. The work shows the value of biomass-derived metal sulfide-carbon heterostuctures in sodium-ion storage.

17.
Environ Sci Pollut Res Int ; 31(15): 22380-22394, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38407712

ABSTRACT

As one of the most significant contaminants and stressors in aquaculture systems, ammonia adversely jeopardizes the health of aquatic animals. Ammonia exposure affects the development, metabolism, and survival of shellfish. However, the responses of the innate immune and antioxidant systems and apoptosis in shellfish under ammonia stress have rarely been reported. In this study, razor clams (Sinonovacula constricta) were exposed to different concentrations of non-ion ammonia (0.25 mg/L, 2.5 mg/L) for 72 h and then placed in ammonia-free seawater for 72 h for recovery. The immune responses induced by ammonia stress on razor clams were investigated by antioxidant enzyme activities and degree of apoptosis in digestive gland and gill tissues at different time points. The results showed that exposure to a high concentration of ammonia greatly disrupted the antioxidant system of the razor clam by exacerbating the accumulation of reactive oxygen species ( O 2 - , H2O2) and disordering the activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase), and the level of activity remained at a significantly high level after recovering for 72 h (P < 0.05). In addition, there were significant differences (P < 0.05) in the expression of key genes (Caspase 7, Cyt-c, Bcl-2, and Bax) in the mitochondrial apoptotic pathway in the digestive glands and gills of razor clams as a result of ammonia stress and were unable to return to normal levels after 72 h of recovery. TUNEL staining indicated that apoptosis was more pronounced in gills, showing a dose and time-dependent pattern. As to the results, ammonia exposure leads to the activation of innate immunity in razor clams, disrupts the antioxidant system, and activates the mitochondrial pathway of apoptosis. This is important for comprehending the mechanism underlying the aquatic toxicity resulting from ammonia in shellfish.


Subject(s)
Antioxidants , Bivalvia , Animals , Antioxidants/metabolism , Ammonia/toxicity , Ammonia/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress , Bivalvia/metabolism , Apoptosis
18.
J Hazard Mater ; 473: 134689, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38788583

ABSTRACT

The arsenopyrite activated by copper ions have similar flotation properties to chalcopyrite. Polyaspartic acid (PASP) and calcium oxide (CaO) using as combination depressants for the selective separation of copper-activated arsenopyrite and chalcopyrite were carried out by micro-flotation experiments, contact angle measurements, surface adsorption capacity tests, zeta potential measurements, X-ray photoelectron spectroscopy (XPS) analyses, inductively coupled plasma-optical emission spectrometer (ICP-OES) tests and time-of-flight secondary ion mass spectrometry (ToF-SIMS) analyses, and its depression mechanism was investigated. The results of flotation experiments showed that the recovery of arsenopyrite after addition of the depressants reached only 7.80 %, while the recovery of chalcopyrite reached 94.02 %. The results of contact angles, adsorption capacity tests and zeta potential measurements showed that the PASP-CaO can selectively enhance the hydrophilicity of arsenopyrite surface, but has little effect on the chalcopyrite. XPS analyses and ICP-OES tests further verified that the depressants first eliminated the activation of copper ions and then selectively adsorbed on the surface of arsenopyrite. ToF-SIMS analyses showed that the PASP-CaO would achieve selective depression of arsenopyrite in the form of PASP, PASP-Ca complexes and Ca(OH)+, respectively. Finally, the mechanism diagram of PASP-CaO selectively depressing arsenopyrite was derived. These results will provide an excellent theoretical reference for the flotation separation of copper arsenic sulfide ore.

19.
Foods ; 13(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38254520

ABSTRACT

Intake of polyphenol-modified wheat products has the potential to reduce the incidence of chronic diseases. In order to determine the modification effect of polyphenols on wheat gluten protein, the effects of grape skin anthocyanin extract (GSAE, additional amounts of 0.1%, 0.2%, 0.3%, 0.4%, and 0.5%, respectively) on the microstructure and physicochemical properties of gluten protein were investigated. The introduction of GSAE improves the maintenance of the gluten network and increases viscoelasticity, as evidenced by rheological and creep recovery tests. The tensile properties of gluten protein were at their peak when the GSAE level was 0.3%. The addition of 0.5% GSAE may raise the denaturation temperature of gluten protein by 6.48 °C-9.02 °C at different heating temperatures, considerably improving its thermal stability. Furthermore, GSAE enhanced the intermolecular hydrogen bond of gluten protein and promoted the conversion of free sulfhydryl groups to disulfide bonds. Meanwhile, the GSAE treatment may also lead to protein aggregation, and the average pore size of gluten samples decreased significantly and the structure became denser, indicating that GSAE improved the stability of the gluten spatial network. The positive effects of GSAE on gluten protein properties suggest the potential of GSAE as a quality enhancer for wheat products.

20.
Sci Rep ; 14(1): 3477, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38347050

ABSTRACT

With technological advancements in diagnostic imaging, smart sensing, and wearables, a multitude of heterogeneous sources or modalities are available to proactively monitor the health of the elderly. Due to the increasing risks of falls among older adults, an early diagnosis tool is crucial to prevent future falls. However, during the early stage of diagnosis, there is often limited or no labeled data (expert-confirmed diagnostic information) available in the target domain (new cohort) to determine the proper treatment for older adults. Instead, there are multiple related but non-identical domain data with labels from the existing cohort or different institutions. Integrating different data sources with labeled and unlabeled samples to predict a patient's condition poses a significant challenge. Traditional machine learning models assume that data for new patients follow a similar distribution. If the data does not satisfy this assumption, the trained models do not achieve the expected accuracy, leading to potential misdiagnosing risks. To address this issue, we utilize domain adaptation (DA) techniques, which employ labeled data from one or more related source domains. These DA techniques promise to tackle discrepancies in multiple data sources and achieve a robust diagnosis for new patients. In our research, we have developed an unsupervised DA model to align two domains by creating a domain-invariant feature representation. Subsequently, we have built a robust fall-risk prediction model based on these new feature representations. The results from simulation studies and real-world applications demonstrate that our proposed approach outperforms existing models.


Subject(s)
Accidental Falls , Machine Learning , Aged , Humans , Accidental Falls/prevention & control , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL