Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
BMC Genomics ; 18(1): 769, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-29020922

ABSTRACT

BACKGROUND: Tuberculosis (TB) is a major global health problem and drug resistance compromises the efforts to control this disease. Pyrazinamide (PZA) is an important drug used in both first and second line treatment regimes. However, its complete mechanism of action and resistance remains unclear. RESULTS: We genotyped and sequenced the complete genomes of 68 M. tuberculosis strains isolated from unrelated TB patients in Peru. No clustering pattern of the strains was verified based on spoligotyping. We analyzed the association between PZA resistance with non-synonymous mutations and specific genes. We found mutations in pncA and novel genes significantly associated with PZA resistance in strains without pncA mutations. These included genes related to transportation of metal ions, pH regulation and immune system evasion. CONCLUSIONS: These results suggest potential alternate mechanisms of PZA resistance that have not been found in other populations, supporting that the antibacterial activity of PZA may hit multiple targets.


Subject(s)
Drug Resistance, Bacterial/genetics , Genes, Bacterial/genetics , Genomics , Mutation , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Pyrazinamide/pharmacology , Antitubercular Agents/pharmacology , Genotype , Phylogeny , Polymorphism, Single Nucleotide
2.
PLoS One ; 15(7): e0235643, 2020.
Article in English | MEDLINE | ID: mdl-32735615

ABSTRACT

BACKGROUND: Pyrazinamide is an important drug against the latent stage of tuberculosis and is used in both first- and second-line treatment regimens. Pyrazinamide-susceptibility test usually takes a week to have a diagnosis to guide initial therapy, implying a delay in receiving appropriate therapy. The continued increase in multi-drug resistant tuberculosis and the prevalence of pyrazinamide resistance in several countries makes the development of assays for prompt identification of resistance necessary. The main cause of pyrazinamide resistance is the impairment of pyrazinamidase function attributed to mutations in the promoter and/or pncA coding gene. However, not all pncA mutations necessarily affect the pyrazinamidase function. OBJECTIVE: To develop a methodology to predict pyrazinamidase function from detected mutations in the pncA gene. METHODS: We measured the catalytic constant (kcat), KM, enzymatic efficiency, and enzymatic activity of 35 recombinant mutated pyrazinamidase and the wild type (Protein Data Bank ID = 3pl1). From all the 3D modeled structures, we extracted several predictors based on three categories: structural stability (estimated by normal mode analysis and molecular dynamics), physicochemical, and geometrical characteristics. We used a stepwise Akaike's information criterion forward multiple log-linear regression to model each kinetic parameter with each category of predictors. We also developed weighted models combining the three categories of predictive models for each kinetic parameter. We tested the robustness of the predictive ability of each model by 6-fold cross-validation against random models. RESULTS: The stability, physicochemical, and geometrical descriptors explained most of the variability (R2) of the kinetic parameters. Our models are best suited to predict kcat, efficiency, and activity based on the root-mean-square error of prediction of the 6-fold cross-validation. CONCLUSIONS: This study shows a quick approach to predict the pyrazinamidase function only from the pncA sequence when point mutations are present. This can be an important tool to detect pyrazinamide resistance.


Subject(s)
Amidohydrolases/metabolism , Bacterial Proteins/metabolism , Mycobacterium tuberculosis/enzymology , Amidohydrolases/chemistry , Amidohydrolases/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cloning, Molecular , Kinetics , Linear Models , Molecular Dynamics Simulation , Mutagenesis , Protein Stability , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL