Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Am J Physiol Cell Physiol ; 325(3): C648-C660, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37486064

ABSTRACT

CROP-Seq combines gene silencing using CRISPR interference with single-cell RNA sequencing. Here, we applied CROP-Seq to study adipogenesis and adipocyte biology. Human preadipocyte SGBS cell line expressing KRAB-dCas9 was transduced with a sgRNA library. Following selection, individual cells were captured using microfluidics at different timepoints during adipogenesis. Bioinformatic analysis of transcriptomic data was used to determine the knockdown effects, the dysregulated pathways, and to predict cellular phenotypes. Single-cell transcriptomes recapitulated adipogenesis states. For all targets, over 400 differentially expressed genes were identified at least at one timepoint. As a validation of our approach, the knockdown of PPARG and CEBPB (which encode key proadipogenic transcription factors) resulted in the inhibition of adipogenesis. Gene set enrichment analysis generated hypotheses regarding the molecular function of novel genes. MAFF knockdown led to downregulation of transcriptional response to proinflammatory cytokine TNF-α in preadipocytes and to decreased CXCL-16 and IL-6 secretion. TIPARP knockdown resulted in increased expression of adipogenesis markers. In summary, this powerful, hypothesis-free tool can identify novel regulators of adipogenesis, preadipocyte, and adipocyte function associated with metabolic disease.NEW & NOTEWORTHY Genomics efforts led to the identification of many genomic loci that are associated with metabolic traits, many of which are tied to adipose tissue function. However, determination of the causal genes, and their mechanism of action in metabolism, is a time-consuming process. Here, we use an approach to determine the transcriptional outcome of candidate gene knockdown for multiple genes at the same time in a human cell model of adipogenesis.


Subject(s)
Metabolic Diseases , RNA, Guide, CRISPR-Cas Systems , Humans , Adipogenesis/genetics , Adipocytes/metabolism , Cell Line , Metabolic Diseases/metabolism , Cell Differentiation/genetics
2.
Arterioscler Thromb Vasc Biol ; 42(5): 659-676, 2022 05.
Article in English | MEDLINE | ID: mdl-35321563

ABSTRACT

BACKGROUND: Understanding the processes behind carotid plaque instability is necessary to develop methods for identification of patients and lesions with stroke risk. Here, we investigated molecular signatures in human plaques stratified by echogenicity as assessed by duplex ultrasound. METHODS: Lesion echogenicity was correlated to microarray gene expression profiles from carotid endarterectomies (n=96). The findings were extended into studies of human and mouse atherosclerotic lesions in situ, followed by functional investigations in vitro in human carotid smooth muscle cells (SMCs). RESULTS: Pathway analyses highlighted muscle differentiation, iron homeostasis, calcification, matrix organization, cell survival balance, and BCLAF1 (BCL2 [B-cell lymphoma 2]-associated transcription factor 1) as the most significant signatures. BCLAF1 was downregulated in echolucent plaques, positively correlated to proliferation and negatively to apoptosis. By immunohistochemistry, BCLAF1 was found in normal medial SMCs. It was repressed early during atherogenesis but reappeared in CD68+ cells in advanced plaques and interacted with BCL2 by proximity ligation assay. In cultured SMCs, BCLAF1 was induced by differentiation factors and mitogens and suppressed by macrophage-conditioned medium. BCLAF1 silencing led to downregulation of BCL2 and SMC markers, reduced proliferation, and increased apoptosis. Transdifferentiation of SMCs by oxLDL (oxidized low-denisty lipoprotein) was accompanied by upregulation of BCLAF1, CD36, and CD68, while oxLDL exposure with BCLAF1 silencing preserved MYH (myosin heavy chain) 11 expression and prevented transdifferentiation. BCLAF1 was associated with expression of cell differentiation, contractility, viability, and inflammatory genes, as well as the scavenger receptors CD36 and CD68. BCLAF1 expression in CD68+/BCL2+ cells of SMC origin was verified in plaques from MYH11 lineage-tracing atherosclerotic mice. Moreover, BCLAF1 downregulation associated with vulnerability parameters and cardiovascular risk in patients with carotid atherosclerosis. CONCLUSIONS: Plaque echogenicity correlated with enrichment of distinct molecular pathways and identified BCLAF1, previously not described in atherosclerosis, as the most significant gene. Functionally, BCLAF1 seems necessary for survival and transdifferentiation of SMCs into a macrophage-like phenotype. The role of BCLAF1 in plaque vulnerability should be further evaluated.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Repressor Proteins/metabolism , Animals , Atherosclerosis/diagnostic imaging , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cell Transdifferentiation , Humans , Lipids , Mice , Myocytes, Smooth Muscle/metabolism , Plaque, Atherosclerotic/pathology , Proto-Oncogene Proteins c-bcl-2/metabolism , Repressor Proteins/genetics , Transcriptome , Tumor Suppressor Proteins/genetics , Ultrasonography
3.
Mol Ther ; 26(4): 1040-1055, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29503197

ABSTRACT

miRNAs are potential regulators of carotid artery stenosis and concordant vulnerable atherosclerotic plaques. Hence, we analyzed miRNA expression in laser captured micro-dissected fibrous caps of either ruptured or stable plaques (n = 10 each), discovering that miR-21 was significantly downregulated in unstable lesions. To functionally evaluate miR-21 in plaque vulnerability, miR-21 and miR-21/apolipoprotein-E double-deficient mice (Apoe-/-miR-21-/-) were assessed. miR-21-/- mice lacked sufficient smooth muscle cell proliferation in response to carotid ligation injury. When exposing Apoe-/-miR-21-/- mice to an inducible plaque rupture model, they presented with more atherothrombotic events (93%) compared with miR-21+/+Apoe-/- mice (57%). We discovered that smooth muscle cell fate in experimentally induced advanced lesions is steered via a REST-miR-21-REST feedback signaling pathway. Furthermore, Apoe-/-miR-21-/- mice presented with more pronounced atherosclerotic lesions, greater foam cell formation, and substantially higher levels of arterial macrophage infiltration. Local delivery of a miR-21 mimic using ultrasound-targeted microbubbles into carotid plaques rescued the vulnerable plaque rupture phenotype. In the present study, we identify miR-21 as a key modulator of pathologic processes in advanced atherosclerosis. Targeted, lesion site-specific overexpression of miR-21 can stabilize vulnerable plaques.


Subject(s)
Atherosclerosis/genetics , Atherosclerosis/pathology , MicroRNAs/genetics , Animals , Apoptosis/genetics , Carotid Artery Diseases/genetics , Carotid Artery Diseases/pathology , Disease Models, Animal , Fibrosis , Gene Expression Profiling , Gene Transfer Techniques , Genotype , Humans , Immunohistochemistry , Lipoproteins, LDL/metabolism , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Knockout , MicroRNAs/administration & dosage , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/pathology
4.
Int J Mol Sci ; 20(6)2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30934548

ABSTRACT

Autophagy serves as a cell survival mechanism which becomes dysregulated under pathological conditions and aging. Aortic valve thickening and calcification causing left ventricular outflow obstruction is known as calcific aortic valve stenosis (CAVS). CAVS is a chronic and progressive disease which increases in incidence and severity with age. Currently, no medical treatment exists for CAVS, and the role of autophagy in the disease remains largely unexplored. To further understand the role of autophagy in the progression of CAVS, we analyzed expression of key autophagy genes in healthy, thickened, and calcified valve tissue from 55 patients, and compared them with nine patients without significant CAVS, undergoing surgery for aortic regurgitation (AR). This revealed a upregulation in autophagy exclusively in the calcified tissue of CAVS patients. This difference in autophagy between CAVS and AR was explored by LC3 lipidation in valvular interstitial cells (VICs), revealing an upregulation in autophagic flux in CAVS patients. Inhibition of autophagy by bafilomycin-A1 led to a decrease in VIC survival. Finally, treatment of VICs with high phosphate led to an increase in autophagic activity. In conclusion, our data suggests that autophagy is upregulated in the calcified tissue of CAVS, serving as a compensatory and pro-survival mechanism.


Subject(s)
Aortic Valve Stenosis/pathology , Aortic Valve/pathology , Autophagy , Calcinosis/pathology , Up-Regulation , Aortic Valve Insufficiency/pathology , Cell Survival , Humans , Lysosomes/metabolism
5.
BMC Med Genet ; 19(1): 39, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29514624

ABSTRACT

BACKGROUND: Takotsubo cardiomyopathy (TCM), also known as "broken heart syndrome", is a type of heart failure characterized by transient ventricular dysfunction in the absence of obstructive coronary lesions. Although associated with increased levels of catecholamines, pathophysiological mechanisms are unknown. Relapses and family heritability indicate a genetic predisposition. Several small studies have investigated associations between three different loci; the ß1-adrenic receptor (ADRB1), G-protein-coupled receptor kinase 5 (GRK5), Bcl-associated athanogene 3 (BAG3) and TCM but no consensus has been reached. METHODS: Participants were recruited using the Swedish Coronary Angiography and Angioplasty Register (SCAAR). TCM patients without coronary artery disease (CAD)(n = 258) were identified and age- and sex-matched subjects with (n = 164) and without (n = 243) CAD were selected as controls. DNA was isolated from saliva and genotyped for candidate single nucleotide polymorphisms in the ADRB1, GRK5 and BAG3 genes. Allele frequencies and Odds Ratios (OR) with 95% Confidence Intervals (CI) for the investigated polymorphisms were compared, respectively calculated for TCM patients and controls. RESULTS: There were no differences in allele frequencies between TCM patients and controls. OR (CI) for TCM patients having at least one minor allele using controls as reference were 1.07 (0.75-1.55) for ADRB1, 0.45 (0.11-1.85) for GRK5 and 1.27 (0.74-2.19) for BAG3. CONCLUSION: By genotyping a large takotsubo cohort, we demonstrate a lack of association between candidate SNPs in the ADRB1, GRK5 and BAG3 genes, earlier suggested to contribute to TCM. Our result indicates a need to expand the search for new genetic candidates contributing to TCM.


Subject(s)
Genetic Predisposition to Disease , Takotsubo Cardiomyopathy/diagnosis , Takotsubo Cardiomyopathy/genetics , Adaptor Proteins, Signal Transducing/genetics , Aged , Apoptosis Regulatory Proteins/genetics , Case-Control Studies , Cohort Studies , Coronary Artery Disease/genetics , Female , G-Protein-Coupled Receptor Kinase 5/genetics , Gene Frequency , Genotyping Techniques , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Receptors, Adrenergic, beta-1/genetics , Surveys and Questionnaires , Sweden
6.
Arterioscler Thromb Vasc Biol ; 35(5): 1226-35, 2015 May.
Article in English | MEDLINE | ID: mdl-25767270

ABSTRACT

OBJECTIVE: Autophagy has emerged as a cell survival mechanism critical for cellular homeostasis, which may play a protective role in atherosclerosis. ATG16L1, a protein essential for early stages of autophagy, has been implicated in the pathogenesis of Crohn's disease. However, it is unknown whether ATG16L1 is involved in atherosclerosis. Our aim was to analyze ATG16L1 expression in carotid atherosclerotic plaques in relation to markers of plaque vulnerability. APPROACH AND RESULTS: Histological analysis of 143 endarterectomized human carotid atherosclerotic plaques revealed that ATG16L1 was expressed in areas surrounding the necrotic core and the shoulder regions. Double immunofluorescence labeling revealed that ATG16L1 was abundantly expressed in phagocytic cells (CD68), endothelial cells (CD31), and mast cells (tryptase) in human advanced plaques. ATG16L1 immunogold labeling was predominantly observed in endothelial cells and foamy smooth muscle cells of the plaques. ATG16L1 protein expression correlated with plaque content of proinflammatory cytokines and matrix metalloproteinases. Analysis of Atg16L1 at 2 distinct stages of the atherothrombotic process in a murine model of plaque vulnerability by incomplete ligation and cuff placement in carotid arteries of apolipoprotein-E-deficient mice revealed a strong colocalization of Atg16L1 and smooth muscle cells only in early atherosclerotic lesions. An increase in ATG16L1 expression and autophagy flux was observed during foam cell formation in human macrophages using oxidized-LDL. CONCLUSIONS: Taken together, this study shows that ATG16L1 protein expression is associated with foam cell formation and inflamed plaque phenotype and could contribute to the development of plaque vulnerability at earlier stages of the atherogenic process.


Subject(s)
Apoptosis/genetics , Carotid Stenosis/genetics , Carrier Proteins/genetics , Gene Expression Regulation , Aged , Aged, 80 and over , Autophagy/genetics , Autophagy-Related Proteins , Carotid Stenosis/pathology , Carotid Stenosis/surgery , Cells, Cultured , Disease Progression , Endarterectomy, Carotid/methods , Endothelial Cells/physiology , Female , Foam Cells/physiology , Humans , Male , Mast Cells/physiology , Risk Assessment , Sampling Studies , Sensitivity and Specificity
7.
FASEB J ; 27(8): 3090-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23603836

ABSTRACT

Perilipin 2 (PLIN2) is the most abundant lipid droplet (LD)-associated protein in nonadipose tissue, and its expression correlates with intracellular lipid accumulation. Here we identified a missense polymorphism, Ser251Pro, that has major effect on protein structure and function, along with an influence on human plasma triglyceride concentration. The evolutionarily conserved Ser251Pro polymorphism was identified with the ClustalW program. Structure modeling using 3D-JigSaw and the Chimera package revealed that the Pro251 allele disrupts a predicted α-helix in PLIN2. Analyses of macrophages from individuals carrying Ser251Pro variants and human embryonic kidney 293 (HEK293) cells stably transfected with either of the alleles demonstrated that the Pro251 variant causes increased lipid accumulation and decreased lipolysis. Analysis of LD size distribution in stably transfected cells showed that the minor Pro251 allele resulted in an increased number of small LDs per cell and increased perilipin 3 protein expression levels as compared with cells carrying the major Ser251 allele. Genotyping of 2113 individuals indicated that the Pro251 variant is associated with decreased plasma triglyceride and very low-density lipoprotein concentrations. Altogether, these data provide the first evidence of a polymorphism in PLIN2 that affects PLIN2 function and may influence the development of metabolic and cardiovascular diseases.


Subject(s)
Lipolysis/genetics , Membrane Proteins/genetics , Mutation, Missense , Polymorphism, Genetic , Triglycerides/blood , Adult , Alleles , Amino Acid Sequence , Cells, Cultured , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/ultrastructure , Female , Genotype , HEK293 Cells , Humans , Lipids/analysis , Lipoproteins, VLDL/blood , Male , Membrane Proteins/chemistry , Microscopy, Confocal , Microscopy, Electron, Transmission , Middle Aged , Models, Molecular , Molecular Sequence Data , Perilipin-2 , Protein Structure, Secondary/genetics , Sequence Homology, Amino Acid , Triglycerides/metabolism
8.
Clin Nutr ; 43(6): 1532-1543, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754305

ABSTRACT

BACKGROUND & AIMS: Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disorder, characterized by the accumulation of excess fat in the liver, and is a driving factor for various severe liver diseases. These multi-factorial and multi-timescale changes are observed in different clinical studies, but these studies have not been integrated into a unified framework. In this study, we aim to present such a unified framework in the form of a dynamic mathematical model. METHODS: For model training and validation, we collected data for dietary or drug-induced interventions aimed at reducing or increasing liver fat. The model was formulated using ordinary differential equations (ODEs) and the mathematical analysis, model simulation, model formulation and the model parameter estimation were all performed in MATLAB. RESULTS: Our mathematical model describes accumulation of fat in the liver and predicts changes in lipid fluxes induced by both dietary and drug interventions. The model is validated using data from a wide range of drug and dietary intervention studies and can predict both short-term (days) and long-term (weeks) changes in liver fat. Importantly, the model computes the contribution of each individual lipid flux to the total liver fat dynamics. Furthermore, the model can be combined with an established bodyweight model, to simulate even longer scenarios (years), also including the effects of insulin resistance and body weight. To help prepare for corresponding eHealth applications, we also present a way to visualize the simulated changes, using dynamically changing lipid droplets, seen in images of liver biopsies. CONCLUSION: In conclusion, we believe that the minimal model presented herein might be a useful tool for future applications, and to further integrate and understand data regarding changes in dietary and drug induced changes in ectopic TAG in the liver. With further development and validation, the minimal model could be used as a disease progression model for steatosis.


Subject(s)
Liver , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/diet therapy , Liver/metabolism , Models, Theoretical , Diet/methods , Models, Biological , Lipid Metabolism
9.
medRxiv ; 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38352379

ABSTRACT

Background & Aims: Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver pathology in western countries, with serious public health consequences. Efforts to identify causal genes for NAFLD have been hampered by the relative paucity of human data from gold-standard magnetic resonance quantification of hepatic fat. To overcome insufficient sample size, genome-wide association studies using NAFLD surrogate phenotypes have been used, but only a small number of loci have been identified to date. In this study, we combined GWAS of NAFLD composite surrogate phenotypes with genetic colocalization studies followed by functional in vitro screens to identify bona fide causal genes for NAFLD. Approach & Results: We used the UK Biobank to explore the associations of our novel NAFLD score, and genetic colocalization to prioritize putative causal genes for in vitro validation. We created a functional genomic framework to study NAFLD genes in vitro using CRISPRi. Our data identify VKORC1, TNKS, LYPLAL1 and GPAM as regulators of lipid accumulation in hepatocytes and suggest the involvement of VKORC1 in the lipid storage related to the development of NAFLD. Conclusions: Complementary genetic and genomic approaches are useful for the identification of NAFLD genes. Our data supports VKORC1 as a bona fide NAFLD gene. We have established a functional genomic framework to study at scale putative novel NAFLD genes from human genetic association studies.

10.
Br J Pharmacol ; 179(19): 4709-4721, 2022 10.
Article in English | MEDLINE | ID: mdl-35751904

ABSTRACT

BACKGROUND AND PURPOSE: Tyrosine kinase inhibitors (TKI) used to treat chronic myeloid leukaemia (CML) have been associated with cardiovascular side effects, including reports of calcific aortic valve stenosis. The aim of this study was to establish the effects of first and second generation TKIs in aortic valve stenosis and to determine the associated molecular mechanisms. EXPERIMENTAL APPROACH: Hyperlipidemic APOE*3Leiden.CETP transgenic mice were treated with nilotinib, imatinib or vehicle. Human valvular interstitial cells (VICs) were isolated and studied in vitro. Gene expression analysis was perfromed in aortic valves from 64 patients undergoing aortic valve replacement surgery. KEY RESULTS: Nilotinib increased murine aortic valve thickness. Nilotinib, but not imatinib, promoted calcification and osteogenic activation and decreased autophagy in human VICs. Differential tyrosine kinase expression was detected between healthy and calcified valve tissue. Transcriptomic target identification revealed that the discoidin domain receptor DDR2, which is preferentially inhibited by nilotinib, was predominantly expressed in human aortic valves but markedly downregulated in calcified valve tissue. Nilotinib and selective DDR2 targeting in VICs induced a similar osteogenic activation, which was blunted by increasing the DDR2 ligand, collagen. CONCLUSIONS AND IMPLICATIONS: These findings suggest that inhibition of DDR2 by nilotinib promoted aortic valve thickening and VIC calcification, with possible translational implications for cardiovascular surveillance and possible personalized medicine in CML patients.


Subject(s)
Aortic Valve Stenosis , Calcinosis , Discoidin Domain Receptor 2 , Animals , Aortic Valve/metabolism , Aortic Valve/pathology , Aortic Valve Stenosis/drug therapy , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/metabolism , Calcinosis/drug therapy , Calcinosis/genetics , Calcinosis/metabolism , Cells, Cultured , Discoidin Domain Receptor 2/metabolism , Discoidin Domain Receptors/metabolism , Humans , Imatinib Mesylate , Mice , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Pyrimidines
11.
Hepatol Commun ; 6(7): 1516-1526, 2022 07.
Article in English | MEDLINE | ID: mdl-35293152

ABSTRACT

Genetic predisposition and unhealthy lifestyle are risk factors for nonalcoholic fatty liver disease (NAFLD). We investigated whether the genetic risk of NAFLD is modified by physical activity, muscular fitness, and/or adiposity. In up to 242,524 UK Biobank participants without excessive alcohol intake or known liver disease, we examined cross-sectional interactions and joint associations of physical activity, muscular fitness, body mass index (BMI), and a genetic risk score (GRS) with alanine aminotransferase (ALT) levels and the proxy definition for suspected NAFLD of ALT levels > 30 U/L in women and >40 U/L in men. Genetic predisposition to NAFLD was quantified using a GRS consisting of 68 loci known to be associated with chronically elevated ALT. Physical activity was assessed using accelerometry, and muscular fitness was estimated by measuring handgrip strength. We found that increased physical activity and grip strength modestly attenuate genetic predisposition to elevation in ALT levels, whereas higher BMI markedly amplifies it (all p values < 0.001). Among those with normal weight and high level of physical activity, the odds of suspected NAFLD were 1.6-fold higher in those with high versus low genetic risk (reference group). In those with high genetic risk, the odds of suspected NAFLD were 12-fold higher in obese participants with low physical activity versus those with normal weight and high physical activity (odds ratio for NAFLD = 19.2 and 1.6, respectively, vs. reference group). Conclusion: In individuals with high genetic predisposition for NAFLD, maintaining a normal body weight and increased physical activity may reduce the risk of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Adiposity/genetics , Cross-Sectional Studies , Exercise , Female , Genetic Predisposition to Disease , Hand Strength , Humans , Male , Non-alcoholic Fatty Liver Disease/epidemiology , Obesity/complications , Risk Factors
12.
Antibiotics (Basel) ; 10(4)2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33807404

ABSTRACT

Introduction: Antibiotics are commonly prescribed in primary care for acute respiratory tract complaints (aRTCs), often inappropriately. Social marketing interventions could improve prescribing in such settings. We evaluate the impact of a social marketing intervention on general practitioners' (GPs') antibiotic prescribing for aRTCs in Malta. Methods: Changes in GPs' antibiotic prescribing were monitored over two surveillance periods between 2015 and 2018. Primary outcome: change in antibiotic prescription for aRTCs. Secondary outcomes: change in antibiotic prescription: (i) for immediate use, (ii) for delayed antibiotic prescription, (iii) by diagnosis, and (iv) by antibiotic class. Data were analysed using clustered analysis and interrupted time series analysis (ITSA). Results: Of 33 participating GPs, 18 successfully completed the study. Although clustered analyses showed a significant 3% decrease in overall antibiotic prescription (p = 0.024), ITSA showed no significant change overall (p = 0.264). Antibiotic prescription decreased significantly for the common cold (p < 0.001), otitis media (p = 0.044), and sinusitis (p = 0.004), but increased for pharyngitis (p = 0.015). Conclusions: The intervention resulted in modest improvements in GPs' antibiotic prescribing. A more top-down approach will likely be required for future initiatives to be successful in this setting, focusing on diagnostic and prescribing support like rapid diagnostic testing, prescribing guidelines, and standardised delayed antibiotic prescriptions.

13.
Addict Sci Clin Pract ; 14(1): 10, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30841916

ABSTRACT

BACKGROUND: Swedish national guidelines recommend that all health care settings systematically screen patients for alcohol use and illicit substance use. When hazardous use is identified, it should immediately be addressed, preferably through brief interventions (BI). It is well known that the prevalence of alcohol use and illicit substance use among psychiatric patients is high, but it is not known to what extent screening and BI are routinely carried out in such clinics. METHODS: Two online surveys investigating the use of screening and BI for alcohol and illicit substances were constructed; one for psychiatric outpatient clinic directors and one for staff at these clinics. The main analyses were calculated as simple frequencies. In secondary analyses, we investigated the associations between substance abuse training, type of clinic and screening/BI delivery. For these analyses, the Chi square test was used. RESULTS: Most clinic directors reported that they have guidelines to screen for alcohol (93.1%) and illicit substance use (78.9%) at initial assessment. Fifty percent reported having guidelines for delivering BI when identifying hazardous alcohol use (35.9% for hazardous illicit substance use). Among staff, 66.6% reported always screening for alcohol use and 57.8% reported always screening for illicit substance use at initial assessment. Further, 36.7% reported that they usually deliver BI when identifying hazardous alcohol use (35.7% for hazardous illicit substance use). Secondary analyses indicated that staff with substance abuse training were significantly more likely to screen for alcohol use than staff without such training. Further, staff at psychosis clinics were significantly less likely to screen for both alcohol and substance use than staff at both general and specialist psychiatric clinics. CONCLUSIONS: Most clinic directors reported having clear guidelines for staff to screen for alcohol use and illicit substance use, but fewer staff members than expected indicated that these guidelines were adhered to. Providing training about substance use disorders for staff may increase use of screening for alcohol use, and psychosis clinics may need to improve their screening routines.


Subject(s)
Outpatients , Psychotherapy, Brief/methods , Substance-Related Disorders/diagnosis , Substance-Related Disorders/therapy , Ambulatory Care Facilities , Cross-Sectional Studies , Guideline Adherence , Humans , Inservice Training , Mass Screening , Practice Guidelines as Topic , Prevalence , Smoking/therapy , Substance-Related Disorders/epidemiology , Sweden/epidemiology
14.
Atherosclerosis ; 266: 196-204, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29040868

ABSTRACT

BACKGROUND AND AIMS: Increased proinsulin relative to insulin levels have been associated with subclinical atherosclerosis (measured by carotid intima-media thickness (cIMT)) and are predictive of future cardiovascular disease (CVD), independently of established risk factors. The mechanisms linking proinsulin to atherosclerosis and CVD are unclear. A genome-wide meta-analysis has identified nine loci associated with circulating proinsulin levels. Using proinsulin-associated SNPs, we set out to use a Mendelian randomisation approach to test the hypothesis that proinsulin plays a causal role in subclinical vascular remodelling. METHODS: We studied the high CVD-risk IMPROVE cohort (n = 3345), which has detailed biochemical phenotyping and repeated, state-of-the-art, high-resolution carotid ultrasound examinations. Genotyping was performed using Illumina Cardio-Metabo and Immuno arrays, which include reported proinsulin-associated loci. Participants with type 2 diabetes (n = 904) were omitted from the analysis. Linear regression was used to identify proinsulin-associated genetic variants. RESULTS: We identified a proinsulin locus on chromosome 15 (rs8029765) and replicated it in data from 20,003 additional individuals. An 11-SNP score, including the previously identified and the chromosome 15 proinsulin-associated loci, was significantly and negatively associated with baseline IMTmean and IMTmax (the primary cIMT phenotypes) but not with progression measures. However, MR-Eggers refuted any significant effect of the proinsulin-associated 11-SNP score, and a non-pleiotropic SNP score of three variants (including rs8029765) demonstrated no effect on baseline or progression cIMT measures. CONCLUSIONS: We identified a novel proinsulin-associated locus and demonstrated that whilst proinsulin levels are associated with cIMT measures, proinsulin per se is unlikely to have a causative effect on cIMT.


Subject(s)
Carotid Artery Diseases/genetics , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Proinsulin/genetics , Vascular Remodeling/genetics , Asymptomatic Diseases , Carotid Artery Diseases/blood , Carotid Artery Diseases/diagnostic imaging , Carotid Artery Diseases/physiopathology , Carotid Intima-Media Thickness , Chromosomes, Human, Pair 15 , Europe , Female , Gene Frequency , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Linear Models , Male , Phenotype , Proinsulin/blood , Quantitative Trait Loci , Risk Factors
15.
JAMA Surg ; 150(6): 512-8, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25853369

ABSTRACT

IMPORTANCE: Pancreatic cancer is the fourth leading cause of cancer-related death in Western countries. In approximately 10% of all patients with pancreatic cancer, it is possible to define a positive family history for pancreatic cancer or for one of the other related genetic syndromes. A screening program for individuals at risk is recommended; however, surveillance modalities have not been defined yet. OBJECTIVE: To analyze the short-term results of a prospective clinical surveillance program for individuals at risk for pancreatic cancer using a noninvasive magnetic resonance imaging (MRI)-based screening protocol. DESIGN, SETTING AND PARTICIPANTS: A prospective observational study of all patients with a genetic risk for developing pancreatic cancer who were referred to Karolinska University Hospital between January 1, 2010, and January 31, 2013, using an MRI-based surveillance program. All patients were investigated for the most common genetic mutations associated with pancreatic cancer. EXPOSURE: A noninvasive MRI-based screening protocol. MAIN OUTCOMES AND MEASURES: The ability of MRI to identify potential precancerous or early cancers in individuals at risk for pancreatic cancer. RESULTS: Forty patients (24 women and 16 men) were enrolled. The mean age was 49.9 years. The mean length of follow-up was 12.9 months. The numbers of relatives affected by pancreatic cancer were 5 in 2 patients (5%), 4 in 5 patients (12.5%), 3 in 17 patients (42.5%), 2 in 14 patients (35%), and 1 in 2 patients (5%). In 4 patients (10%), a p16 mutation was found; in 3, a BRCA2 mutation (7.5%); and in 1, a BRCA1 mutation (2.5%). In 16 patients (40%), MRI revealed a pancreatic lesion: intraductal papillary mucinous neoplasia (14 patients, 35%) and pancreatic ductal adenocarcinoma (2 patients, 5%). One patient had a synchronous intraductal papillary mucinous neoplasia and pancreatic ductal adenocarcinoma. Five patients (12.5%) required surgery (3 for pancreatic ductal adenocarcinoma and 2 for intraductal papillary mucinous neoplasia), while the remaining 35 are under continued surveillance. CONCLUSIONS AND RELEVANCE: During a median follow-up of approximately 1 year, pancreatic lesions were detected in 40% of the patients, of whom 5 underwent surgery. Although the study time was relatively short, the surveillance program in individuals at risk seems to be effective.


Subject(s)
Early Detection of Cancer/statistics & numerical data , Mass Screening/methods , Pancreatic Neoplasms/prevention & control , Adult , Aged , Bacteriocins , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/prevention & control , Early Detection of Cancer/methods , Female , Genes, BRCA1/physiology , Genes, BRCA2/physiology , Genetic Predisposition to Disease , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Pancreatectomy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/surgery , Peptides , Precancerous Conditions/diagnosis , Prospective Studies , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL