Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 162
Filter
Add more filters

Publication year range
1.
Nature ; 625(7996): 735-742, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38030727

ABSTRACT

Noncoding DNA is central to our understanding of human gene regulation and complex diseases1,2, and measuring the evolutionary sequence constraint can establish the functional relevance of putative regulatory elements in the human genome3-9. Identifying the genomic elements that have become constrained specifically in primates has been hampered by the faster evolution of noncoding DNA compared to protein-coding DNA10, the relatively short timescales separating primate species11, and the previously limited availability of whole-genome sequences12. Here we construct a whole-genome alignment of 239 species, representing nearly half of all extant species in the primate order. Using this resource, we identified human regulatory elements that are under selective constraint across primates and other mammals at a 5% false discovery rate. We detected 111,318 DNase I hypersensitivity sites and 267,410 transcription factor binding sites that are constrained specifically in primates but not across other placental mammals and validate their cis-regulatory effects on gene expression. These regulatory elements are enriched for human genetic variants that affect gene expression and complex traits and diseases. Our results highlight the important role of recent evolution in regulatory sequence elements differentiating primates, including humans, from other placental mammals.


Subject(s)
Conserved Sequence , Evolution, Molecular , Genome , Primates , Animals , Female , Humans , Pregnancy , Conserved Sequence/genetics , Deoxyribonuclease I/metabolism , DNA/genetics , DNA/metabolism , Genome/genetics , Mammals/classification , Mammals/genetics , Placenta , Primates/classification , Primates/genetics , Regulatory Sequences, Nucleic Acid/genetics , Reproducibility of Results , Transcription Factors/metabolism , Proteins/genetics , Gene Expression Regulation/genetics
2.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36611239

ABSTRACT

Analysis of the methylome of tumor cell-free deoxyribonucleic acid (DNA; cfDNA) has emerged as a powerful non-invasive technique for cancer subtyping and prognosis. However, its application is frequently hampered by the quality and total cfDNA yield. Here, we demonstrate the feasibility of very low-input cfDNA for whole-methylome and copy-number profiling studies using enzymatic conversion of unmethylated cysteines [enzymatic methyl-seq (EM-seq)] to better preserve DNA integrity. We created a model for predicting genomic subtyping and prognosis with high accuracy. We validated our tool by comparing whole-genome CpG sequencing with in situ cohorts generated with bisulfite conversion and array hybridization, demonstrating that, despite the different techniques and sample origins, information on cfDNA methylation is comparable with in situ cohorts. Our findings support use of liquid biopsy followed by EM-seq to assess methylome of cancer patients, enabling validation in external cohorts. This advance is particularly relevant for rare cancers like neuroblastomas where liquid-biopsy volume is restricted by ethical regulations in pediatric patients.


Subject(s)
Cell-Free Nucleic Acids , Neoplasms , Humans , Child , Epigenome , DNA Methylation , Genomics/methods , Neoplasms/genetics , DNA
3.
J Pathol ; 263(4-5): 482-495, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38872438

ABSTRACT

Liver fibrosis is the consequence of chronic liver injury in the presence of an inflammatory component. Although the main executors of this activation are known, the mechanisms that lead to the inflammatory process that mediates the production of pro-fibrotic factors are not well characterized. Epidermal growth factor receptor (EGFR) signaling in hepatocytes is essential for the regenerative processes of the liver; however, its potential role in regulating the fibrotic niche is not yet clear. Our group generated a mouse model that expresses an inactive truncated form of the EGFR specifically in hepatocytes (ΔEGFR mice). Here, we have analyzed the response of WT and ΔEGFR mice to chronic treatment with carbon tetrachloride (CCl4), which induces a pro-inflammatory and fibrotic process in the liver. The results indicated that the hallmarks of liver fibrosis were attenuated in CCl4-treated ΔEGFR mice when compared with CCl4-treated WT mice, coinciding with a faster resolution of the fibrotic process and ameliorated damage. The absence of EGFR activity in hepatocytes induced changes in the pattern of immune cells in the liver, with a notable increase in the population of M2 macrophages, more related to fibrosis resolution, as well as in the population of lymphocytes related to eradication of the damage. Transcriptome analysis of hepatocytes, and secretome studies of extracellular media from in vitro experiments, allowed us to elucidate the specific molecular mechanisms regulated by EGFR that mediate hepatocyte production of both pro-fibrotic and pro-inflammatory mediators; these have consequences for the deposition of extracellular matrix proteins, as well as for the immune microenvironment. Overall, our study uncovered novel mechanistic insights regarding EGFR kinase-dependent actions in hepatocytes that reveal its key role in chronic liver damage. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Carbon Tetrachloride , ErbB Receptors , Hepatocytes , Signal Transduction , Animals , ErbB Receptors/metabolism , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/pathology , Liver/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Mice , Mice, Inbred C57BL , Male , Cell Communication , Macrophages/metabolism , Macrophages/pathology , Mice, Transgenic
4.
Nucleic Acids Res ; 51(14): 7143-7162, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37351572

ABSTRACT

In the late 19th century, formalin fixation with paraffin-embedding (FFPE) of tissues was developed as a fixation and conservation method and is still used to this day in routine clinical and pathological practice. The implementation of state-of-the-art nucleic acid sequencing technologies has sparked much interest for using historical FFPE samples stored in biobanks as they hold promise in extracting new information from these valuable samples. However, formalin fixation chemically modifies DNA, which potentially leads to incorrect sequences or misinterpretations in downstream processing and data analysis. Many publications have concentrated on one type of DNA damage, but few have addressed the complete spectrum of FFPE-DNA damage. Here, we review mitigation strategies in (I) pre-analytical sample quality control, (II) DNA repair treatments, (III) analytical sample preparation and (IV) bioinformatic analysis of FFPE-DNA. We then provide recommendations that are tested and illustrated with DNA from 13-year-old liver specimens, one FFPE preserved and one fresh frozen, applying target-enriched sequencing. Thus, we show how DNA damage can be compensated, even when using low quantities (50 ng) of fragmented FFPE-DNA (DNA integrity number 2.0) that cannot be amplified well (Q129 bp/Q41 bp = 5%). Finally, we provide a checklist called 'ERROR-FFPE-DNA' that summarises recommendations for the minimal information in publications required for assessing fitness-for-purpose and inter-study comparison when using FFPE samples.


Subject(s)
Sequence Analysis, DNA , DNA/genetics , DNA/analysis , Formaldehyde , Paraffin Embedding/methods , Sequence Analysis, DNA/methods , Tissue Fixation/methods
5.
Neurobiol Dis ; 182: 106134, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37100209

ABSTRACT

The vestibular ganglion contains primary sensory neurons that are postsynaptic to the transducing hair cells (HC) and project to the central nervous system. Understanding the response of these neurons to HC stress or loss is of great interest as their survival and functional competence will determine the functional outcome of any intervention aiming at repair or regeneration of the HCs. We have shown that subchronic exposure to the ototoxicant 3,3'-iminodipropionitrile (IDPN) in rats and mice causes a reversible detachment and synaptic uncoupling between the HCs and the ganglion neurons. Here, we used this paradigm to study the global changes in gene expression in vestibular ganglia using RNA-seq. Comparative gene ontology and pathway analyses of the data from both model species indicated a robust downregulation of terms related to synapses, including presynaptic and postsynaptic functions. Manual analyses of the most significantly downregulated transcripts identified genes with expressions related to neuronal activity, modulators of neuronal excitability, and transcription factors and receptors that promote neurite growth and differentiation. For choice selected genes, the mRNA expression results were replicated by qRT-PCR, validated spatially by RNA-scope, or were demonstrated to be associated with decreased expression of the corresponding protein. We conjectured that decreased synaptic input or trophic support on the ganglion neurons from the HC was triggering these expression changes. To support this hypothesis, we demonstrated decreased expression of BDNF mRNA in the vestibular epithelium after subchronic ototoxicity and also downregulated expression of similarly identified genes (e.g Etv5, Camk1g, Slc17a6, Nptx2, Spp1) after HC ablation with another ototoxic compound, allylnitrile. We conclude that vestibular ganglion neurons respond to decreased input from HCs by decreasing the strength of all their synaptic contacts, both as postsynaptic and presynaptic players.


Subject(s)
Ototoxicity , Rodentia , Rats , Mice , Animals , Rodentia/metabolism , Ototoxicity/metabolism , Neurons/metabolism , Transcription Factors/metabolism , RNA, Messenger/metabolism , DNA-Binding Proteins/metabolism
6.
Appl Environ Microbiol ; 89(6): e0063523, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37272812

ABSTRACT

Stenotrophomonas maltophilia is an environmental bacterium as well as an emerging opportunistic multidrug-resistant pathogen. They use the endogenous diffusible signal factor (DSF) quorum sensing (QS) system to coordinate population behavior and regulate virulence processes but can also respond to exogenous N-acyl-homoserine lactone (AHL) signals produced by neighboring bacteria. The effect of these QS signals on the global gene expression of this species remains, however, unknown. Whole-transcriptome sequencing analyses were performed for exponential cultures of S. maltophilia K279a treated with exogenous DSF or AHLs. Addition of DSF and AHLs signals resulted in changes in expression of at least 2-fold for 28 and 82 genes, respectively. Interestingly, 22 of these genes were found upregulated by both QS signals, 14 of which were shown to also be induced during the stationary phase. Gene functions regulated by all conditions included lipid and amino acid metabolism, stress response and signal transduction, nitrogen and iron metabolism, and adaptation to microoxic conditions. Among the common top upregulated QS core genes, a putative TetR-like regulator (locus tag SMLT2053) was selected for functional characterization. This regulator controls its own ß-oxidation operon (Smlt2053-Smlt2051), and it is found to sense long-chain fatty acids (FAs), including the QS signal DSF. Gene knockout experiments reveal that operon Smlt2053-Smlt2051 is involved in biofilm formation. Overall, our findings provide clues on the effect that QS signals have in S. maltophilia QS-related phenotypes and the transition from the exponential to the stationary phase and bacterial fitness under high-density growth. IMPORTANCE The quorum sensing system in Stenotrophomonas maltophilia, in addition to coordinating the bacterial population, controls virulence-associated phenotypes, such as biofilm formation, motility, protease production, and antibiotic resistance mechanisms. Biofilm formation is frequently associated with the persistence and chronic nature of nosocomial infections. In addition, biofilms exhibit high resistance to antibiotics, making treatment of these infections extremely difficult. The importance of studying the metabolic and regulatory systems controlled by quorum sensing autoinducers will make it possible to discover new targets to control pathogenicity mechanisms in S. maltophilia.


Subject(s)
Quorum Sensing , Stenotrophomonas maltophilia , Stenotrophomonas maltophilia/genetics , Biofilms , Virulence , Acyl-Butyrolactones/metabolism , Fatty Acids/metabolism
7.
Nature ; 530(7588): 113-6, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26814966

ABSTRACT

ATP-dependent chromatin remodellers allow access to DNA for transcription factors and the general transcription machinery, but whether mammalian chromatin remodellers target specific nucleosomes to regulate transcription is unclear. Here we present genome-wide remodeller-nucleosome interaction profiles for the chromatin remodellers Chd1, Chd2, Chd4, Chd6, Chd8, Chd9, Brg1 and Ep400 in mouse embryonic stem (ES) cells. These remodellers bind one or both full nucleosomes that flank micrococcal nuclease (MNase)-defined nucleosome-free promoter regions (NFRs), where they separate divergent transcription. Surprisingly, large CpG-rich NFRs that extend downstream of annotated transcriptional start sites are nevertheless bound by non-nucleosomal or subnucleosomal histone variants (H3.3 and H2A.Z) and marked by H3K4me3 and H3K27ac modifications. RNA polymerase II therefore navigates hundreds of base pairs of altered chromatin in the sense direction before encountering an MNase-resistant nucleosome at the 3' end of the NFR. Transcriptome analysis after remodeller depletion reveals reciprocal mechanisms of transcriptional regulation by remodellers. Whereas at active genes individual remodellers have either positive or negative roles via altering nucleosome stability, at polycomb-enriched bivalent genes the same remodellers act in an opposite manner. These findings indicate that remodellers target specific nucleosomes at the edge of NFRs, where they regulate ES cell transcriptional programs.


Subject(s)
Chromatin Assembly and Disassembly , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Genome/genetics , Mouse Embryonic Stem Cells/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism , Animals , DNA Helicases/metabolism , Histones/metabolism , Mice , Micrococcal Nuclease/metabolism , Mouse Embryonic Stem Cells/cytology , Nuclear Proteins/metabolism , Promoter Regions, Genetic/genetics , RNA Polymerase II/metabolism , Substrate Specificity , Trans-Activators/metabolism , Transcription Factors/metabolism , Transcription Initiation Site
8.
Plant J ; 101(2): 455-472, 2020 01.
Article in English | MEDLINE | ID: mdl-31529539

ABSTRACT

We sequenced the genome of the highly heterozygous almond Prunus dulcis cv. Texas combining short- and long-read sequencing. We obtained a genome assembly totaling 227.6 Mb of the estimated almond genome size of 238 Mb, of which 91% is anchored to eight pseudomolecules corresponding to its haploid chromosome complement, and annotated 27 969 protein-coding genes and 6747 non-coding transcripts. By phylogenomic comparison with the genomes of 16 additional close and distant species we estimated that almond and peach (Prunus persica) diverged around 5.88 million years ago. These two genomes are highly syntenic and show a high degree of sequence conservation (20 nucleotide substitutions per kb). However, they also exhibit a high number of presence/absence variants, many attributable to the movement of transposable elements (TEs). Transposable elements have generated an important number of presence/absence variants between almond and peach, and we show that the recent history of TE movement seems markedly different between them. Transposable elements may also be at the origin of important phenotypic differences between both species, and in particular for the sweet kernel phenotype, a key agronomic and domestication character for almond. Here we show that in sweet almond cultivars, highly methylated TE insertions surround a gene involved in the biosynthesis of amygdalin, whose reduced expression has been correlated with the sweet almond phenotype. Altogether, our results suggest a key role of TEs in the recent history and diversification of almond and its close relative peach.


Subject(s)
Base Sequence , DNA Transposable Elements/genetics , Genome, Plant , Prunus dulcis/genetics , Prunus persica/genetics , Chromosome Mapping , DNA Methylation , Domestication , Evolution, Molecular , Genes, Plant/genetics , Phylogeny , Seeds , Species Specificity
9.
Mol Biol Evol ; 37(3): 730-756, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31702774

ABSTRACT

Aphids (Aphidoidea) are a diverse group of hemipteran insects that feed on plant phloem sap. A common finding in studies of aphid genomes is the presence of a large number of duplicated genes. However, when these duplications occurred remains unclear, partly due to the high relatedness of sequenced species. To better understand the origin of aphid duplications we sequenced and assembled the genome of Cinara cedri, an early branching lineage (Lachninae) of the Aphididae family. We performed a phylogenomic comparison of this genome with 20 other sequenced genomes, including the available genomes of five other aphids, along with the transcriptomes of two species belonging to Adelgidae (a closely related clade to the aphids) and Coccoidea. We found that gene duplication has been pervasive throughout the evolution of aphids, including many parallel waves of recent, species-specific duplications. Most notably, we identified a consistent set of very ancestral duplications, originating from a large-scale gene duplication predating the diversification of Aphidomorpha (comprising aphids, phylloxerids, and adelgids). Genes duplicated in this ancestral wave are enriched in functions related to traits shared by Aphidomorpha, such as association with endosymbionts, and adaptation to plant defenses and phloem-sap-based diet. The ancestral nature of this duplication wave (106-227 Ma) and the lack of sufficiently conserved synteny make it difficult to conclude whether it originated from a whole-genome duplication event or, alternatively, from a burst of large-scale segmental duplications. Genome sequencing of other aphid species belonging to different Aphidomorpha and related lineages may clarify these findings.


Subject(s)
Aphids/classification , Aphids/genetics , Gene Duplication , Gene Expression Profiling/methods , Whole Genome Sequencing/methods , Animals , Evolution, Molecular , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Insect Proteins/genetics , Phylogeny , Species Specificity , Synteny
10.
Genome Res ; 28(6): 878-890, 2018 06.
Article in English | MEDLINE | ID: mdl-29724792

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) has significantly deepened our insights into complex tissues, with the latest techniques capable of processing tens of thousands of cells simultaneously. Analyzing increasing numbers of cells, however, generates extremely large data sets, extending processing time and challenging computing resources. Current scRNA-seq analysis tools are not designed to interrogate large data sets and often lack sensitivity to identify marker genes. With bigSCale, we provide a scalable analytical framework to analyze millions of cells, which addresses the challenges associated with large data sets. To handle the noise and sparsity of scRNA-seq data, bigSCale uses large sample sizes to estimate an accurate numerical model of noise. The framework further includes modules for differential expression analysis, cell clustering, and marker identification. A directed convolution strategy allows processing of extremely large data sets, while preserving transcript information from individual cells. We evaluated the performance of bigSCale using both a biological model of aberrant gene expression in patient-derived neuronal progenitor cells and simulated data sets, which underlines the speed and accuracy in differential expression analysis. To test its applicability for large data sets, we applied bigSCale to assess 1.3 million cells from the mouse developing forebrain. Its directed down-sampling strategy accumulates information from single cells into index cell transcriptomes, thereby defining cellular clusters with improved resolution. Accordingly, index cell clusters identified rare populations, such as reelin (Reln)-positive Cajal-Retzius neurons, for which we report previously unrecognized heterogeneity associated with distinct differentiation stages, spatial organization, and cellular function. Together, bigSCale presents a solution to address future challenges of large single-cell data sets.


Subject(s)
RNA/genetics , Single-Cell Analysis/methods , Software , Transcriptome/genetics , Animals , Cell Adhesion Molecules, Neuronal/genetics , Cell Differentiation/genetics , Cluster Analysis , Extracellular Matrix Proteins/genetics , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Mice , Nerve Tissue Proteins/genetics , Neurons/metabolism , Reelin Protein , Serine Endopeptidases/genetics
11.
J Clin Microbiol ; 59(8): e0023821, 2021 07 19.
Article in English | MEDLINE | ID: mdl-33980650

ABSTRACT

Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been used for the direct detection of KPC-producing isolates by analysis of the 11,109 Da mass peak representing the P019 protein. In this study, we evaluate the presence of the 11,109 Da mass peak in a collection of 435 unduplicated Klebsiella pneumoniae clinical isolates. The prevalence of the P019 peak in the blaKPC K. pneumoniae isolates was 49.2% (32/65). The 11,109 Da mass peak was not observed in any of the other carbapenemase (319) or noncarbapenemase producers (116). Computational analysis of the presence of the p019 gene was performed in the aforementioned carbapenemase-producing K. pneumoniae isolates fully characterized by whole-genome sequencing (WGS) and in a further collection of 1,649 K. pneumoniae genomes included in EuSCAPE. Herein, we have demonstrated that the p019 gene is not exclusively linked to the pKpQil plasmid but that it is present in the following plasmids: IncFIB(K)/IncFII(K)/ColRNAI, IncFIB(pQil), IncFIB(pQil)/ColRNAI, IncFIB(pQil)/IncFII(K), IncFIB(K)/IncFII(K), and IncX3. In addition, we have proven the independent movement of the Tn4401 and the ISKpn31, of which the p019 gene is a component. The absence of the p019 gene was obvious in Col440I, Col(pHAD28), IncFIB(K)/IncX3/IncFII(K), and IncFIB(K)/IncFII(K) plasmids. In addition, we also observed another plasmid in which neither Tn4401 nor ISKpn31 was found, IncP6. In the EuSCAPE, the occurrence of p019 varied from 0% to 100% among the different geographical locations. The adverse clinical impact of the diminished prevalence of the p019 gene within the plasmid encoding KPC-producing Klebsiella pneumoniae puts forward the need for reconsideration when applying this technique in a clinical setting.


Subject(s)
Klebsiella pneumoniae , beta-Lactamases , Anti-Bacterial Agents , Bacterial Proteins/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Plasmids/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Whole Genome Sequencing , beta-Lactamases/genetics
12.
J Clin Microbiol ; 59(7): e0080021, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33952594

ABSTRACT

The increasing emergence of carbapenemase-producing Klebsiella pneumoniae (CPK) isolates is a global health alarm. Rapid methods that require minimum sample preparation and rapid data analysis are urgently required. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been used by clinical laboratories for identification of antibiotic-resistant bacteria; however, discrepancies have arisen regarding biological and technical issues. The aim of this study was to standardize an operating procedure and data analysis for identification of CPK by MALDI-TOF MS. To evaluate this approach, a series of 162 K. pneumoniae isolates (112 CPK and 50 non-CPK) were processed in the MALDI BioTyper system (Bruker Daltonik, Germany) following a standard operating procedure. The study was conducted in two stages; the first is denominated the "reproducibility stage" and the second "CPK identification." The first stage was designed to evaluate the biological and technical variation associated with the entire analysis of CPK and the second stage to assess the final accuracy of MALDI-TOF MS for the identification of CPK. Therefore, we present an improved MALDI-TOF MS data analysis pipeline using neural network analysis implemented in Clover MS Data Analysis Software (Clover Biosoft, Spain) that is designed to reduce variability, guarantee interlaboratory reproducibility, and maximize the information selected from the bacterial proteome. Using the random forest (RF) algorithm, 100% of CPK isolates were correctly identified when all the peaks in the spectra were selected as input features and total ion current (TIC) normalization was applied. Thus, we have demonstrated that real-time direct tracking of CPK is possible using MALDI-TOF MS.


Subject(s)
Data Analysis , Klebsiella pneumoniae , Bacterial Proteins , Germany , Reproducibility of Results , Spain , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , beta-Lactamases
13.
J Antimicrob Chemother ; 76(6): 1498-1510, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33677560

ABSTRACT

BACKGROUND: Imipenem/relebactam is a novel carbapenem/ß-lactamase inhibitor combination, developed to act against carbapenemase-producing Enterobacterales (CPE). OBJECTIVES: To assess the in vitro activity of imipenem/relebactam against a Spanish nationwide collection of CPE by testing the susceptibility of these isolates to 16 widely used antimicrobials and to determine the underlying ß-lactam resistance mechanisms involved and the molecular epidemiology of carbapenemases in Spain. MATERIALS AND METHODS: Clinical CPE isolates (n = 401) collected for 2 months from 24 hospitals in Spain were tested. MIC50, MIC90 and susceptibility/resistance rates were interpreted in accordance with the EUCAST guidelines. ß-Lactam resistance mechanisms and molecular epidemiology were characterized by WGS. RESULTS: For all isolates, high rates of susceptibility to colistin (86.5%; MIC50/90 = 0.12/8 mg/L), imipenem/relebactam (85.8%; MIC50/90 = 0.5/4 mg/L) and ceftazidime/avibactam (83.8%, MIC50/90 = 1/≥256 mg/L) were observed. The subgroups of isolates producing OXA-48-like (n = 305, 75.1%) and KPC-like enzymes (n = 44, 10.8%) were highly susceptible to ceftazidime/avibactam (97.7%, MIC50/90 = 1/2 mg/L) and imipenem/relebactam (100.0%, MIC50/90 = ≤0.25/1 mg/L), respectively.The most widely disseminated high-risk clones of carbapenemase-producing Klebsiella pneumoniae across Spain were found to be ST11, ST147, ST392 and ST15 (mostly associated with OXA-48) and ST258/512 (in all cases producing KPC). CONCLUSIONS: Imipenem/relebactam, colistin and ceftazidime/avibactam were the most active antimicrobials against all CPEs. Imipenem/relebactam is a valuable addition to the antimicrobial arsenal used in the fight against CPE, particularly against KPC-producing isolates, which in all cases were susceptible to this combination.


Subject(s)
Azabicyclo Compounds , Imipenem , Anti-Bacterial Agents/pharmacology , Azabicyclo Compounds/pharmacology , Bacterial Proteins , Ceftazidime , Drug Combinations , Imipenem/pharmacology , Microbial Sensitivity Tests , Spain , beta-Lactamases/genetics
14.
Haematologica ; 106(4): 1120-1128, 2021 04 01.
Article in English | MEDLINE | ID: mdl-32273478

ABSTRACT

Plasmablastic lymphoma mutational profile is undescribed. Here we performed a targeted exonic NGS analysis of 30 plasmablastic lymphoma cases with a B cell lymphoma dedicated panel and FISH for the detection of MYC rearrangements. A complete phenotyping of the neoplastic and microenvironment cell populations was also performed. We have identified an enrichment in recurrent genetic events in MYC (69% with MYC translocation or amplification and 3 cases with missense point mutations), PRDM1/Blimp1 and STAT3 mutations. These gene mutations were more frequent in EBV positive disease. Other genetic events included mutations in BRAF, EP300, BCR (CD79A and CD79B), NOTCH pathway (NOTCH2, NOTCH1 and SGK1) and MYD88pL265P. Immunohistochemical analysis showed consistent MYC expression, higher in cases with MYC rearrangements together with phospho-STAT3 (Tyr705) overexpression in cases with STAT3 SH2 domain mutations. Microenvironment populations were heterogeneous and unrelated with EBV, with an enrichment of Tumor Associated Macrophages (TAM) and PD1 positive T cells. PD-L1 was expressed in all cases in the TAM population but only in 5 cases in the neoplastic cells (4 out of 14 EBV positive cases). HLA expression was absent in the majority of PBL cases. In summary, Plasmablastic lymphoma mutational profile is heterogeneous and related with EBV infection. Genetic events in MYC, STAT3 and PRDM1/Blimp1 are more frequent in EBV positive disease. An enrichment in TAM and PD1 reactive T lymphocytes is found in the microenvironment of PBL cases, that express PD-L1 in the neoplastic cells in a fraction of cases.


Subject(s)
Epstein-Barr Virus Infections , Plasmablastic Lymphoma , Carcinogenesis , Humans , Plasmablastic Lymphoma/diagnosis , Plasmablastic Lymphoma/genetics , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , STAT3 Transcription Factor/genetics , Translocation, Genetic , Tumor Microenvironment/genetics
15.
Nature ; 526(7574): 519-24, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26200345

ABSTRACT

Chronic lymphocytic leukaemia (CLL) is a frequent disease in which the genetic alterations determining the clinicobiological behaviour are not fully understood. Here we describe a comprehensive evaluation of the genomic landscape of 452 CLL cases and 54 patients with monoclonal B-lymphocytosis, a precursor disorder. We extend the number of CLL driver alterations, including changes in ZNF292, ZMYM3, ARID1A and PTPN11. We also identify novel recurrent mutations in non-coding regions, including the 3' region of NOTCH1, which cause aberrant splicing events, increase NOTCH1 activity and result in a more aggressive disease. In addition, mutations in an enhancer located on chromosome 9p13 result in reduced expression of the B-cell-specific transcription factor PAX5. The accumulative number of driver alterations (0 to ≥4) discriminated between patients with differences in clinical behaviour. This study provides an integrated portrait of the CLL genomic landscape, identifies new recurrent driver mutations of the disease, and suggests clinical interventions that may improve the management of this neoplasia.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation/genetics , 3' Untranslated Regions/genetics , Alternative Splicing/genetics , B-Lymphocytes/metabolism , Carrier Proteins/genetics , Chromosomes, Human, Pair 9/genetics , DNA Mutational Analysis , DNA, Neoplasm/genetics , DNA-Binding Proteins , Enhancer Elements, Genetic/genetics , Genomics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , PAX5 Transcription Factor/biosynthesis , PAX5 Transcription Factor/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Transcription Factors/genetics
16.
Am J Primatol ; 83(6): e23255, 2021 06.
Article in English | MEDLINE | ID: mdl-33792947

ABSTRACT

The novel coronavirus SARS-CoV-2, which in humans leads to the disease COVID-19, has caused global disruption and more than 2 million fatalities since it first emerged in late 2019. As we write, infection rates are at their highest point globally and are rising extremely rapidly in some areas due to more infectious variants. The primary target of SARS-CoV-2 is the cellular receptor angiotensin-converting enzyme-2 (ACE2). Recent sequence analyses of the ACE2 gene predict that many nonhuman primates are also likely to be highly susceptible to infection. However, the anticipated risk is not equal across the Order. Furthermore, some taxonomic groups show high ACE2 amino acid conservation, while others exhibit high variability at this locus. As an example of the latter, analyses of strepsirrhine primate ACE2 sequences to date indicate large variation among lemurs and lorises compared to other primate clades despite low sampling effort. Here, we report ACE2 gene and protein sequences for 71 individual strepsirrhines, spanning 51 species and 19 genera. Our study reinforces previous results while finding additional variability in other strepsirrhine species, and suggests several clades of lemurs have high potential susceptibility to SARS-CoV-2 infection. Troublingly, some species, including the rare and endangered aye-aye (Daubentonia madagascariensis), as well as those in the genera Avahi and Propithecus, may be at high risk. Given that lemurs are endemic to Madagascar and among the primates at highest risk of extinction globally, further understanding of the potential threat of COVID-19 to their health should be a conservation priority. All feasible actions should be taken to limit their exposure to SARS-CoV-2.


Subject(s)
COVID-19/veterinary , Lemur , Lorisidae , Primate Diseases/epidemiology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/epidemiology , Lemur/genetics , Lorisidae/genetics , Primate Diseases/virology , Risk Factors
17.
Am J Hum Genet ; 100(4): 659-665, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28318499

ABSTRACT

Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Through genetic mapping of disease loci and whole-exome sequencing in four unrelated multiplex families presenting with severe AMC, we identified biallelic loss-of-function mutations in LGI4 (leucine-rich glioma-inactivated 4). LGI4 is a ligand secreted by Schwann cells that regulates peripheral nerve myelination via its cognate receptor ADAM22 expressed by neurons. Immunolabeling experiments and transmission electron microscopy of the sciatic nerve from one of the affected individuals revealed a lack of myelin. Functional tests using affected individual-derived iPSCs showed that these germline mutations caused aberrant splicing of the endogenous LGI4 transcript and in a cell-based assay impaired the secretion of truncated LGI4 protein. This is consistent with previous studies reporting arthrogryposis in Lgi4-deficient mice due to peripheral hypomyelination. This study adds to the recent reports implicating defective axoglial function as a key cause of AMC.


Subject(s)
Arthrogryposis/genetics , Extracellular Matrix Proteins/genetics , Mutation , Schwann Cells/metabolism , Arthrogryposis/diagnosis , Arthrogryposis/pathology , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Myelin Sheath/metabolism , Nerve Tissue Proteins , Pedigree
18.
Genome Res ; 27(4): 580-590, 2017 04.
Article in English | MEDLINE | ID: mdl-28336543

ABSTRACT

In mouse and human meiosis, DNA double-strand breaks (DSBs) initiate homologous recombination and occur at specific sites called hotspots. The localization of these sites is determined by the sequence-specific DNA binding domain of the PRDM9 histone methyl transferase. Here, we performed an extensive analysis of PRDM9 binding in mouse spermatocytes. Unexpectedly, we identified a noncanonical recruitment of PRDM9 to sites that lack recombination activity and the PRDM9 binding consensus motif. These sites include gene promoters, where PRDM9 is recruited in a DSB-dependent manner. Another subset reveals DSB-independent interactions between PRDM9 and genomic sites, such as the binding sites for the insulator protein CTCF. We propose that these DSB-independent sites result from interactions between hotspot-bound PRDM9 and genomic sequences located on the chromosome axis.


Subject(s)
Genome , Histone-Lysine N-Methyltransferase/metabolism , Nucleotide Motifs , Animals , CCCTC-Binding Factor/metabolism , DNA Breaks, Double-Stranded , Male , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic , Protein Binding , Spermatocytes/metabolism
19.
Nature ; 513(7517): 195-201, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25209798

ABSTRACT

Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ∼5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat.


Subject(s)
Genome/genetics , Hylobates/classification , Hylobates/genetics , Karyotype , Phylogeny , Animals , Evolution, Molecular , Hominidae/classification , Hominidae/genetics , Humans , Molecular Sequence Data , Retroelements/genetics , Selection, Genetic , Transcription Termination, Genetic
20.
Hum Mol Genet ; 26(20): 3989-3994, 2017 10 15.
Article in English | MEDLINE | ID: mdl-29016857

ABSTRACT

Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Homozygosity mapping of disease loci combined with whole exome sequencing in a consanguineous family presenting with lethal AMC allowed the identification of a homozygous frameshift deletion in UNC50 gene (c.750_751del:p.Cys251Phefs*4) in the index case. To assess the effect of the mutation, an equivalent mutation in the Caenorhabditis elegans orthologous gene was created using CRISPR/Cas9. We demonstrated that unc-50(kr331) modification caused the loss of acetylcholine receptor (AChR) expression in C. elegans muscle. unc-50(kr331) animals were as resistant to the cholinergic agonist levamisole as unc-50 null mutants suggesting that AChRs were no longer expressed in this animal model. This was confirmed by using a knock-in strain in which a red fluorescent protein was inserted into the AChR locus: no signal was detected in unc-50(kr331) background, suggesting that UNC-50, a protein known to be involved in AChR trafficking, was no longer functional. These data indicate that biallelic mutation in the UNC50 gene underlies AMC through a probable loss of AChR expression at the neuromuscular junction which is essential for the cholinergic transmission during human muscle development.


Subject(s)
Arthrogryposis/genetics , Arthrogryposis/metabolism , Frameshift Mutation , Membrane Proteins/genetics , Membrane Proteins/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Receptors, Cholinergic/metabolism , Alleles , Amino Acid Sequence , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Disease Models, Animal , Female , Humans , Male , Neuromuscular Junction/genetics , Neuromuscular Junction/metabolism , Pedigree , Protein Transport , Receptors, Cholinergic/genetics , Stillbirth/genetics
SELECTION OF CITATIONS
SEARCH DETAIL