Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Blood ; 143(7): 597-603, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38048552

ABSTRACT

ABSTRACT: The role of measurable residual disease (MRD) negativity as a biomarker to stop treatment is being investigated in transplant-eligible patients with multiple myeloma (MM). Thus, it is important to identify risk factors of MRD resurgence and/or progressive disease (PD) among patients achieving undetectable MRD to avoid undertreating them. Here, we studied 267 newly diagnosed transplant-eligible patients with MM enrolled in the GEM2012MENOS65 and GEM2014MAIN clinical trials who achieved MRD negativity by next-generation flow cytometry. After a median follow-up of 73 months since the first MRD negative assessment, 111 of the 267 (42%) patients showed MRD resurgence and/or PD. The only prognostic factors at diagnosis that predicted MRD resurgence and/or PD were an International Staging System (ISS) 3 and the presence of ≥0.01% circulating tumor cells (CTCs). Failure to achieve MRD negativity after induction also predicted higher risk of MRD resurgence and/or PD. Patients having 0 vs 1 vs ≥2 risk factors (ISS 3, ≥0.01% CTCs, and late MRD negativity) showed 5-year rates of MRD resurgence and/or PD of 16%, 33%, and 57%, respectively (P < .001). Thus, these easily measurable risk factors could help refine the selection of patients for whom treatment cessation after MRD negativity is being investigated in clinical trials. This trial was registered at www.clinicaltrials.gov as NCT01916252 and NCT02406144.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/therapy , Multiple Myeloma/drug therapy , Treatment Outcome , Risk Factors , Neoplasm, Residual/diagnosis
2.
Br J Haematol ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811363

ABSTRACT

Circulating tumour DNA (ctDNA) allows genotyping and minimal residual disease (MRD) detection in lymphomas. Using a next-generation sequencing (NGS) approach (EuroClonality-NDC), we evaluated the clinical and prognostic value of ctDNA in a series of R-CHOP-treated diffuse large B-cell lymphoma (DLBCL) patients at baseline (n = 68) and after two cycles (n = 59), monitored by metabolic imaging (positron emission tomography combined with computed tomography [PET/CT]). A molecular marker was identified in 61/68 (90%) ctDNA samples at diagnosis. Pretreatment high ctDNA levels significantly correlated with elevated lactate dehydrogenase, advanced stage, high-risk International Prognostic Index and a trend to shorter 2-year progression-free survival (PFS). Valuable NGS data after two cycles of treatment were obtained in 44 cases, and 38 achieved major molecular response (MMR; 2.5-log drop in ctDNA). PFS curves displayed statistically significant differences among those achieving MMR versus those not achieving MMR (2-year PFS of 76% vs. 0%, p < 0.001). Similarly, more than 66% reduction in ΔSUVmax by PET/CT identified two subgroups with different prognosis (2-year PFS of 83% vs. 38%; p < 0.001). Combining both approaches MMR and ΔSUVmax reduction, a better stratification was observed (2-year PFS of 84% vs. 17% vs. 0%, p < 0.001). EuroClonality-NDC panel allows the detection of a molecular marker in the ctDNA in 90% of DLBCL. ctDNA reduction at two cycles and its combination with interim PET results improve patient prognosis stratification.

3.
Haematologica ; 109(3): 877-887, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37646661

ABSTRACT

Upregulation of a cyclin D gene determined by expression microarrays is an almost universal event in multiple myeloma (MM), but this finding has not been properly confirmed at the protein level. For this reason, we carried out a quantitative analysis of cyclin D proteins using a capillary electrophoresis nanoimmunoassay in newly diagnosed MM patients. Exclusive expression of cyclin D1 and D2 proteins was detected in 54 of 165 (33%) and 30 of 165 (18%) of the MM patients, respectively. Of note, cyclin D1 or D2 proteins were undetectable in 41% of the samples. High levels of cyclin D1 protein were strongly associated with the presence of t(11;14) or 11q gains. Cyclin D2 protein was detected in all the cases bearing t(14;16), but in only 24% of patients with t(4;14). The presence of cyclin D2 was associated with shorter overall survival (hazard ratio =2.14; P=0.017), although patients expressing cyclin D2 protein, but without 1q gains, had a favorable prognosis. In conclusion, although one of the cyclins D is overexpressed at the mRNA level in almost all MM patients, in approximately half of the patients this does not translate into detectable protein. This suggests that cyclins D could not play an oncogenic role in a proportion of patients with MM (clinicaltrials gov. identifier: NCT01916252).


Subject(s)
Cyclin D1 , Multiple Myeloma , Humans , Cyclin D1/genetics , Cyclin D2/genetics , Multiple Myeloma/diagnosis , Multiple Myeloma/genetics , Gene Expression Profiling , Cyclin D
4.
Br J Haematol ; 200(3): 306-314, 2023 02.
Article in English | MEDLINE | ID: mdl-36261137

ABSTRACT

Although follicular lymphoma (FL) patients relapsing within 24 months after first-line treatment (POD24) have a poor prognosis, some cases show notable survival after first relapse (SF1R). We aimed to characterize the POD24 FL population and to identify the main prognostic factors at progression. We selected 162 POD24 patients (80F; median age at first relapse 59 years) from a cohort of 1067 grades 1-3a FL-treated patients. The remaining 905 patients treated with first-line immunochemotherapy and diagnosed during the same period were used to compare outcomes in terms of survival. After a median follow-up of 11.0 years, 96 patients died (10y-SF1R of 40%). Age over 60 years (p < 0.001), high lactate dehydrogenase (LDH) (p < 0.001), haemoglobin (Hb) less than 120 g/L (p < 0.001), advanced stage (p < 0.001), high-risk Follicular Lymphoma International Prognostic Index (FLIPI) (p < 0.001), histological transformation (HT) (p < 0.001) and reaching less than complete response (CR) after salvage therapy (p < 0.001), predicted poor SF1R at relapse. In multivariate analysis only high-risk FLIPI and HT maintained prognostic significance for SF1R. POD24 patients not transformed and with low/intermediate FLIPI at relapse behaved better than the remaining cases. POD24 patients showed an excess mortality of 38% compared to the general population. Although outcome of POD24 FL patients is poor, a considerable group of them (low/intermediate FLIPI and not transformed at first relapse) behave better.


Subject(s)
Lymphoma, Follicular , Humans , Middle Aged , Prognosis , Lymphoma, Follicular/drug therapy , Lymphoma, Follicular/pathology , Neoplasm Recurrence, Local , Immunotherapy
5.
Blood ; 137(1): 49-60, 2021 01 07.
Article in English | MEDLINE | ID: mdl-32693406

ABSTRACT

Patients with multiple myeloma (MM) carrying standard- or high-risk cytogenetic abnormalities (CAs) achieve similar complete response (CR) rates, but the later have inferior progression-free survival (PFS). This questions the legitimacy of CR as a treatment endpoint and represents a biological conundrum regarding the nature of tumor reservoirs that persist after therapy in high-risk MM. We used next-generation flow (NGF) cytometry to evaluate measurable residual disease (MRD) in MM patients with standard- vs high-risk CAs (n = 300 and 90, respectively) enrolled in the PETHEMA/GEM2012MENOS65 trial, and to identify mechanisms that determine MRD resistance in both patient subgroups (n = 40). The 36-month PFS rates were higher than 90% in patients with standard- or high-risk CAs achieving undetectable MRD. Persistent MRD resulted in a median PFS of âˆ¼3 and 2 years in patients with standard- and high-risk CAs, respectively. Further use of NGF to isolate MRD, followed by whole-exome sequencing of paired diagnostic and MRD tumor cells, revealed greater clonal selection in patients with standard-risk CAs, higher genomic instability with acquisition of new mutations in high-risk MM, and no unifying genetic event driving MRD resistance. Conversely, RNA sequencing of diagnostic and MRD tumor cells uncovered the selection of MRD clones with singular transcriptional programs and reactive oxygen species-mediated MRD resistance in high-risk MM. Our study supports undetectable MRD as a treatment endpoint for patients with MM who have high-risk CAs and proposes characterizing MRD clones to understand and overcome MRD resistance. This trial is registered at www.clinicaltrials.gov as #NCT01916252.


Subject(s)
Drug Resistance, Neoplasm/genetics , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Neoplasm, Residual/pathology , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Boron Compounds/therapeutic use , Bortezomib/therapeutic use , Chromosome Aberrations , Dexamethasone/therapeutic use , Female , Flow Cytometry , Glycine/analogs & derivatives , Glycine/therapeutic use , Humans , Lenalidomide/therapeutic use , Male , Middle Aged , Progression-Free Survival , Treatment Outcome
6.
Br J Haematol ; 199(3): 344-354, 2022 11.
Article in English | MEDLINE | ID: mdl-35983648

ABSTRACT

Biallelic inactivation of TP53 has been included in the definition of double-hit (DH) multiple myeloma (MM), which entails an ominous prognosis. However, this condition, or even the presence of high-risk cytogenetic abnormalities, cannot accurately capture the 15%-20% of the MM population with a median overall survival below 24 months. This prompted us to look for other MM patients who might have transcriptional characteristics similar to those with DH-TP53. In the present study, we analysed RNA-seq, whole-genome and whole-exome sequencing data from 660 newly diagnosed MM (NDMM) patients from the MMRF (Multiple Myeloma Research Foundation) CoMMpass study to characterize the transcriptional signature of TP53 double-hit (DH-TP53) MM. We found 78 genes that were exclusively deregulated in DH-TP53 patients. A score based on these genes identified a group of 50 patients who shared the same transcriptional profile (DH-TP53-like group) whose prognosis was particularly unfavourable [median overall survival (OS) < 2 years], despite not harbouring the biallelic inactivation of TP53. The prognostic value of the DH-TP53 score was externally validated using gene expression data from 850 NDMM patients analysed by microarrays. Furthermore, our DH-TP53 score refined the traditional prognostic stratification of MM patients according to the cytogenetic abnormalities and International Staging System (ISS).


Subject(s)
Multiple Myeloma , Humans , Chromosome Aberrations , Prognosis , Tumor Suppressor Protein p53/genetics
7.
Blood ; 135(26): 2375-2387, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32299093

ABSTRACT

Risk of developing myelodysplastic syndrome (MDS) is significantly increased in both multiple myeloma (MM) and monoclonal gammopathy of undetermined significance, suggesting that it is therapy independent. However, the incidence and sequelae of dysplastic hematopoiesis at diagnosis are unknown. Here, we used multidimensional flow cytometry (MFC) to prospectively screen for the presence of MDS-associated phenotypic alterations (MDS-PA) in the bone marrow of 285 patients with MM enrolled in the PETHEMA/GEM2012MENOS65 trial (#NCT01916252). We investigated the clinical significance of monocytic MDS-PA in a larger series of 1252 patients enrolled in 4 PETHEMA/GEM protocols. At diagnosis, 33 (11.6%) of 285 cases displayed MDS-PA. Bulk and single-cell-targeted sequencing of MDS recurrently mutated genes in CD34+ progenitors (and dysplastic lineages) from 67 patients revealed clonal hematopoiesis in 13 (50%) of 26 cases with MDS-PA vs 9 (22%) of 41 without MDS-PA; TET2 and NRAS were the most frequently mutated genes. Dynamics of MDS-PA at diagnosis and after autologous transplant were evaluated in 86 of 285 patients and showed that in most cases (69 of 86 [80%]), MDS-PA either persisted or remained absent in patients with or without MDS-PA at diagnosis, respectively. Noteworthy, MDS-associated mutations infrequently emerged after high-dose therapy. Based on MFC profiling, patients with MDS-PA have altered hematopoiesis and T regulatory cell distribution in the tumor microenvironment. Importantly, the presence of monocytic MDS-PA at diagnosis anticipated greater risk of hematologic toxicity and was independently associated with inferior progression-free survival (hazard ratio, 1.5; P = .02) and overall survival (hazard ratio, 1.7; P = .01). This study reveals the biological and clinical significance of dysplastic hematopoiesis in newly diagnosed MM, which can be screened with moderate sensitivity using cost-effective MFC.


Subject(s)
Clonal Hematopoiesis , Multiple Myeloma/pathology , Myelodysplastic Syndromes/etiology , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Clinical Trials, Phase III as Topic , Combined Modality Therapy , Female , Flow Cytometry/methods , Hematopoietic Stem Cell Transplantation , High-Throughput Nucleotide Sequencing , Humans , In Situ Hybridization, Fluorescence , Kaplan-Meier Estimate , Male , Middle Aged , Multiple Myeloma/drug therapy , Multiple Myeloma/mortality , Multiple Myeloma/therapy , Mutation , Prognosis , Progression-Free Survival , Prospective Studies , Randomized Controlled Trials as Topic , Transplantation, Autologous , Tumor Microenvironment
8.
Am J Hematol ; 97(6): 700-710, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35188691

ABSTRACT

Loss and/or mutation of the TP53 gene are associated with short survival in multiple myeloma, but the p53 landscape goes far beyond. At least 12 p53 protein isoforms have been identified as a result of a combination of alternative splicing, alternative promoters and/or alternative transcription site starts, which are grouped as α, ß, γ, from transactivation domain (TA), long, and short isoforms. Nowadays, there are no studies evaluating the expression of p53 isoforms and its clinical relevance in multiple myeloma (MM). We used capillary nanoimmunoassay to quantify the expression of p53 protein isoforms in CD138-purified samples from 156 patients with newly diagnosed MM who were treated as part of the PETHEMA/GEM2012 clinical trial and investigated their prognostic impact. Quantitative real-time polymerase chain reaction was used to corroborate the results at RNA levels. Low and high levels of expression of short and TAp53ß/γ isoforms, respectively, were associated with adverse prognosis in MM patients. Multivariate Cox models identified high levels of TAp53ß/γ (hazard ratio [HR], 4.49; p < .001) and high-risk cytogenetics (HR, 2.69; p < .001) as independent prognostic factors associated with shorter time to progression. The current cytogenetic-risk classification was notably improved when expression levels of p53 protein isoforms were incorporated, whereby high-risk MM expressing high levels of short isoforms had significantly longer survival than high-risk patients with low levels of these isoforms. This is the first study that demonstrates the prognostic value of p53 isoforms in MM patients, providing new insights on the role of p53 protein dysregulation in MM biology.


Subject(s)
Multiple Myeloma , Tumor Suppressor Protein p53 , Genes, p53 , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/therapy , Prognosis , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Isoforms/therapeutic use , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
9.
Blood ; 133(11): 1217-1221, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30692124

ABSTRACT

Deletions of chromosome 17p (del17p) that span the TP53 gene are associated with poor outcome in multiple myeloma (MM), but the prognostic value of del17p cancer clonal fraction (CCF) remains unclear. We applied uniform cytogenetic assessments in a large cohort of newly diagnosed MM (NDMM) patients carrying varying levels of del17p. Incremental CCF change was associated with shorter survival, and a robust CCF threshold of 0.55 was established in discovery and replication data sets. After stratification on the 0.55-CCF threshold, high-risk patients had statistically significantly poorer outcomes compared with low-risk patients (median progression-free survival [PFS] and overall survival [OS], 14 and 32 vs 23.1 and 76.2 months, respectively). Analyses of a third data set comprising whole-exome sequencing data from NDMM patients identified presence of TP53 deletions/mutations as a necessary requirement for high-risk stratification in addition to exceeding the del17p CCF threshold. Meta-analysis conducted across 3 data sets confirmed the robustness of the CCF threshold for PFS and OS. Our analyses demonstrate the feasibility of fluorescence in situ hybridization- and sequencing-based methods to identify TP53 deletions, estimate CCF, and establish that both CCF threshold of 0.55 and presence of TP53 deletion are necessary to identify del17p-carrying NDMM patients with poor prognosis.


Subject(s)
Biomarkers, Tumor/genetics , Chromosome Deletion , Chromosomes, Human, Pair 17/genetics , Clonal Evolution , Multiple Myeloma/genetics , Multiple Myeloma/mortality , Tumor Suppressor Protein p53/genetics , High-Throughput Nucleotide Sequencing , Humans , Multiple Myeloma/pathology , Mutation , Prognosis , Survival Rate
10.
J Cell Mol Med ; 24(7): 4171-4182, 2020 04.
Article in English | MEDLINE | ID: mdl-32141701

ABSTRACT

FAM46C, frequently mutated in multiple myeloma (MM), has recently been shown to encode a non-canonical poly(A) polymerase (ncPAP). However, its target mRNAs and its role in MM pathogenesis remain mostly unknown. Using CRISPR-Cas9 technology and gene expression analysis, we found that the inactivation of FAM46C in MM down-regulates immunoglobulins (Igs) and several mRNAs encoding ER-resident proteins, including some involved in unfolded protein response and others that affect glycosylation. Interestingly, we show that FAM46C expression is induced during plasma cell (PC) differentiation and that Ig mRNAs encoding heavy and light chains are substrates of the ncPAP, as revealed by poly(A) tail-length determination assays. The absence of the ncPAP results in Ig mRNA poly(A) tail-shortening, leading to a reduction in mRNA and protein abundance. On the other hand, loss of FAM46C up-regulates metastasis-associated lncRNA MALAT1 and results in a sharp increase in the migration ability. This phenotype depends mainly on the activation of PI3K/Rac1 signalling, which might have significant therapeutic implications. In conclusion, our results identify Ig mRNAs as targets of FAM46C, reveal an important function of this protein during PC maturation to increase antibody production and suggest that its role as a tumour suppressor might be related to the inhibition of myeloma cell migration.


Subject(s)
Antibody Formation/genetics , Immunoglobulins/immunology , Multiple Myeloma/genetics , Nucleotidyltransferases/genetics , Antibody Formation/immunology , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Knockout Techniques , Humans , Immunoglobulins/biosynthesis , Multiple Myeloma/immunology , Multiple Myeloma/pathology , Nucleotidyltransferases/immunology , Polyadenylation/immunology , RNA, Messenger/genetics , Signal Transduction/genetics , Unfolded Protein Response
11.
Br J Haematol ; 189(4): 718-730, 2020 05.
Article in English | MEDLINE | ID: mdl-32124426

ABSTRACT

Recommended genetic categorization of acute myeloid leukaemias (AML) includes a favourable-risk category, but not all these patients have good prognosis. Here, we used next-generation sequencing to evaluate the mutational profile of 166 low-risk AML patients: 30 core-binding factor (CBF)-AMLs, 33 nucleophosmin (NPM1)-AMLs, 4 biCEBPα-AMLs and 101 acute promyelocytic leukaemias (APLs). Functional categories of mutated genes differed among subgroups. NPM1-AMLs showed frequent variations in DNA-methylation genes (DNMT3A, TET2, IDH1/2) (79%), although without prognostic impact. Within this group, splicing-gene mutations were an independent factor for relapse-free (RFS) and overall survival (OS). In CBF-AML, poor independent factors for RFS and OS were mutations in RAS pathway and cohesin genes, respectively. In APL, the mutational profile differed according to the risk groups. High-risk APLs showed a high mutation rate in cell-signalling genes (P = 0·002), highlighting an increased incidence of FLT3 internal tandem duplication (ITD) (65%, P < 0·0001). Remarkably, in low-risk APLs (n = 28), NRAS mutations were strongly correlated with a shorter five-year RFS (25% vs. 100%, P < 0·0001). Overall, a high number of mutations (≥3) was the worst prognostic factor RFS (HR = 2·6, P = 0·003). These results suggest that gene mutations may identify conventional low-risk AML patients with poor prognosis and might be useful for better risk stratification and treatment decisions.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Leukemia, Myeloid, Acute/genetics , Female , Humans , Male , Middle Aged , Mutation , Neoplasm Recurrence, Local , Nucleophosmin , Risk Factors
13.
Genome Res ; 25(4): 478-87, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25644835

ABSTRACT

While analyzing the DNA methylome of multiple myeloma (MM), a plasma cell neoplasm, by whole-genome bisulfite sequencing and high-density arrays, we observed a highly heterogeneous pattern globally characterized by regional DNA hypermethylation embedded in extensive hypomethylation. In contrast to the widely reported DNA hypermethylation of promoter-associated CpG islands (CGIs) in cancer, hypermethylated sites in MM, as opposed to normal plasma cells, were located outside CpG islands and were unexpectedly associated with intronic enhancer regions defined in normal B cells and plasma cells. Both RNA-seq and in vitro reporter assays indicated that enhancer hypermethylation is globally associated with down-regulation of its host genes. ChIP-seq and DNase-seq further revealed that DNA hypermethylation in these regions is related to enhancer decommissioning. Hypermethylated enhancer regions overlapped with binding sites of B cell-specific transcription factors (TFs) and the degree of enhancer methylation inversely correlated with expression levels of these TFs in MM. Furthermore, hypermethylated regions in MM were methylated in stem cells and gradually became demethylated during normal B-cell differentiation, suggesting that MM cells either reacquire epigenetic features of undifferentiated cells or maintain an epigenetic signature of a putative myeloma stem cell progenitor. Overall, we have identified DNA hypermethylation of developmentally regulated enhancers as a new type of epigenetic modification associated with the pathogenesis of MM.


Subject(s)
DNA Methylation/genetics , Enhancer Elements, Genetic/genetics , Multiple Myeloma/genetics , Neoplastic Stem Cells/cytology , Plasma Cells/cytology , Cell Differentiation/genetics , Cell Line, Tumor , CpG Islands/genetics , DNA, Neoplasm/genetics , Down-Regulation/genetics , Epigenesis, Genetic/genetics , Gene Expression Regulation, Neoplastic , Genome, Human/genetics , Humans , Promoter Regions, Genetic , Transcription Factors/biosynthesis , Transcription Factors/genetics
14.
Blood ; 127(24): 3035-9, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27069257

ABSTRACT

Immunoglobulin light-chain amyloidosis (AL) and multiple myeloma (MM) are 2 distinct monoclonal gammopathies that involve the same cellular compartment: clonal plasma cells (PCs). Despite the fact that knowledge about MM PC biology has significantly increased in the last decade, the same does not apply for AL. Here, we used an integrative phenotypic, molecular, and genomic approach to study clonal PCs from 24 newly diagnosed patients with AL. Through principal-component-analysis, we demonstrated highly overlapping phenotypic profiles between AL and both monoclonal gammopathy of undetermined significance and MM PCs. However, in contrast to MM, highly purified fluorescence-activated cell-sorted clonal PCs from AL (n = 9) showed almost normal transcriptome, with only 38 deregulated genes vs normal PCs; these included a few tumor-suppressor (CDH1, RCAN) and proapoptotic (GLIPR1, FAS) genes. Notwithstanding, clonal PCs in AL (n = 11) were genomically unstable, with a median of 9 copy number alterations (CNAs) per case, many of such CNAs being similar to those found in MM. Whole-exome sequencing (WES) performed in 5 AL patients revealed a median of 15 nonrecurrent mutations per case. Altogether, our results show that in the absence of a unifying mutation by WES, clonal PCs in AL display phenotypic and CNA profiles similar to MM, but their transcriptome is remarkably similar to that of normal PCs.


Subject(s)
Amyloidosis/genetics , Immunoglobulin Light Chains/genetics , Paraproteinemias/genetics , Plasma Cells/metabolism , Transcriptome , Amyloidosis/metabolism , Amyloidosis/pathology , Clone Cells/metabolism , Clone Cells/pathology , Gene Expression Profiling , Genome-Wide Association Study , Genomics , High-Throughput Nucleotide Sequencing , Humans , Immunophenotyping , Microarray Analysis , Paraproteinemias/metabolism , Paraproteinemias/pathology , Phenotype , Plasma Cells/pathology
15.
Blood ; 127(4): 420-5, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26500339

ABSTRACT

Bortezomib plus melphalan and prednisone (VMP) and lenalidomide plus low-dose dexamethasone (Rd) are 2 standards of care for elderly untreated multiple myeloma (MM) patients. We planned to use VMP and Rd for 18 cycles in a sequential or alternating scheme. Patients (233) with untreated MM, >65 years, were randomized to receive 9 cycles of VMP followed by 9 cycles of Rd (sequential scheme; n = 118) vs 1 cycle of VMP followed by 1 cycle of Rd, and so on, up to 18 cycles (alternating scheme; n = 115). VMP consisted of one 6-week cycle of bortezomib using a biweekly schedule, followed by eight 5-week cycles of once-weekly VMP. Rd included nine 4-week cycles of Rd. The primary end points were 18-month progression free survival (PFS) and safety profile of both schemes. The 18-month PFS was 74% and 80% in the sequential and alternating arms, respectively (P = .21). The sequential and alternating groups exhibited similar hematologic and nonhematologic toxicity. Both arms yielded similar complete response rate (42% and 40%), median PFS (32 months vs 34 months, P = .65), and 3-year overall survival (72% vs 74%, P = .63). The benefit of both schemes was remarkable in patients aged 65 to 75 years. In addition, achieving complete and immunophenotypic response was associated with better outcome. The present approach, based on VMP and Rd, is associated with high efficacy and acceptable toxicity profile with no differences between the sequential and alternating regimens. This trial was registered at www.clinicaltrials.gov as #NCT00443235.


Subject(s)
Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Dexamethasone/therapeutic use , Melphalan/therapeutic use , Multiple Myeloma/drug therapy , Aged , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/adverse effects , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bortezomib/administration & dosage , Bortezomib/adverse effects , Bortezomib/therapeutic use , Dexamethasone/administration & dosage , Dexamethasone/adverse effects , Female , Humans , Lenalidomide , Male , Melphalan/administration & dosage , Melphalan/adverse effects , Multiple Myeloma/diagnosis , Prednisone/administration & dosage , Prednisone/adverse effects , Prednisone/therapeutic use , Thalidomide/administration & dosage , Thalidomide/adverse effects , Thalidomide/analogs & derivatives , Thalidomide/therapeutic use , Treatment Outcome
16.
Blood ; 127(25): 3165-74, 2016 06 23.
Article in English | MEDLINE | ID: mdl-27118453

ABSTRACT

The value of minimal residual disease (MRD) in multiple myeloma (MM) has been more frequently investigated in transplant-eligible patients than in elderly patients. Because an optimal balance between treatment efficacy and toxicity is of utmost importance in patients with elderly MM, sensitive MRD monitoring might be particularly valuable in this patient population. Here, we used second-generation 8-color multiparameter-flow cytometry (MFC) to monitor MRD in 162 transplant-ineligible MM patients enrolled in the PETHEMA/GEM2010MAS65 study. The transition from first- to second-generation MFC resulted in increased sensitivity and allowed us to identify 3 patient groups according to MRD levels: MRD negative (<10(-5); n = 54, 34%), MRD positive (between <10(-4) and ≥10(-5); n = 20, 12%), and MRD positive (≥10(-4); n = 88, 54%). MRD status was an independent prognostic factor for time to progression (TTP) (hazard ratio [HR], 2.7; P = .007) and overall survival (OS) (HR, 3.1; P = .04), with significant benefit for MRD-negative patients (median TTP not reached, 70% OS at 3 years), and similar poorer outcomes for cases with MRD levels between <10(-4) and ≥10(-5) vs ≥10(-4) (both with a median TTP of 15 months; 63% and 55% OS at 3 years, respectively). Furthermore, MRD negativity significantly improved TTP of patients >75 years (HR, 4.8; P < .001), as well as those with high-risk cytogenetics (HR, 12.6; P = .01). Using second-generation MFC, immune profiling concomitant to MRD monitoring also contributed to identify patients with poor, intermediate, and favorable outcomes (25%, 61%, and 100% OS at 3 years, respectively; P = .01), the later patients being characterized by an increased compartment of mature B cells. Our results show that similarly to transplant candidates, MRD monitoring is one of the most relevant prognostic factors in elderly MM patients, irrespectively of age or cytogenetic risk. This trial was registered at www.clinicaltrials.gov as #NCT01237249.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Immunity/drug effects , Monitoring, Physiologic/methods , Multiple Myeloma/diagnosis , Multiple Myeloma/drug therapy , Aged , Aged, 80 and over , Biomarkers, Pharmacological/blood , Biomarkers, Tumor/blood , Dexamethasone/administration & dosage , Drug Monitoring/methods , Female , Humans , Immunity/physiology , Lenalidomide , Male , Melphalan/therapeutic use , Multiple Myeloma/blood , Multiple Myeloma/mortality , Neoplasm, Residual , Prednisone/therapeutic use , Prognosis , Survival Analysis , Thalidomide/administration & dosage , Thalidomide/analogs & derivatives , Vincristine/therapeutic use
17.
Haematologica ; 103(5): 880-889, 2018 05.
Article in English | MEDLINE | ID: mdl-29545347

ABSTRACT

Protein analysis in bone marrow samples from patients with multiple myeloma has been limited by the low concentration of proteins obtained after CD138+ cell selection. A novel approach based on capillary nano-immunoassay could make it possible to quantify dozens of proteins from each myeloma sample in an automated manner. Here we present a method for the accurate and robust quantification of the expression of multiple proteins extracted from CD138-purified multiple myeloma samples frozen in RLT Plus buffer, which is commonly used for nucleic acid preservation and isolation. Additionally, the biological and clinical value of this analysis for a panel of 12 proteins essential to the pathogenesis of multiple myeloma was evaluated in 63 patients with newly diagnosed multiple myeloma. The analysis of the prognostic impact of CRBN/Cereblon and IKZF1/Ikaros mRNA/protein showed that only the protein levels were able to predict progression-free survival of patients; mRNA levels were not associated with prognosis. Interestingly, high levels of Cereblon and Ikaros proteins were associated with longer progression-free survival only in patients who received immunomodulatory drugs and not in those treated with other drugs. In conclusion, the capillary nano-immunoassay platform provides a novel opportunity for automated quantification of the expression of more than 20 proteins in CD138+ primary multiple myeloma samples.


Subject(s)
Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Immunoassay/methods , Multiple Myeloma/metabolism , Nanotechnology/methods , RNA, Messenger/genetics , Syndecan-1/metabolism , Humans , Multiple Myeloma/diagnosis , Multiple Myeloma/genetics , Prognosis , Survival Rate
18.
Ann Hematol ; 97(3): 475-484, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29353304

ABSTRACT

Immunoglobulin M (IgM) monoclonal gammopathies show considerable variability, involving three different stages of presentation: IgM monoclonal gammopathy of undetermined significance (IgM-MGUS), asymptomatic Waldenström's macroglobulinemia (AWM), and symptomatic WM (SWM). Despite recent findings about the genomic and transcriptomic characteristics of such disorders, we know little about the causes of this clinical heterogeneity or the mechanisms involved in the progression from indolent to symptomatic forms. To clarify these matters, we have performed a gene expression and mutational study in a well-characterized cohort of 69 patients, distinguishing between the three disease presentations in an attempt to establish the relationship with the clinical and biological features of the patients. Results showed that the frequency of genetic alterations progressively increased from IgM-MGUS to AWM and SWM. This means that, in contrast to MYD88 p.L265P and CXCR4 WHIM mutations, present from the beginning of the pathogenesis, most of them would be acquired during the course of the disease. Moreover, the expression study revealed a higher level of expression of genes belonging to the Toll-like receptor (TLR) signaling pathway in symptomatic versus indolent forms, which was also reflected in the disease presentation and prognosis. In conclusion, our findings showed that IgM monoclonal gammopathies present higher mutational burden as the disease progresses, in parallel to the upregulation of relevant pathogenic pathways. This study provides a translational view of the genomic basis of WM pathogenesis.


Subject(s)
Genetic Heterogeneity , Immunoglobulin M/genetics , Monoclonal Gammopathy of Undetermined Significance/genetics , Waldenstrom Macroglobulinemia/genetics , Aged , Aged, 80 and over , DNA Mutational Analysis , Disease Progression , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Monoclonal Gammopathy of Undetermined Significance/pathology , Prognosis , Waldenstrom Macroglobulinemia/pathology
19.
Am J Pathol ; 186(8): 2171-2182, 2016 08.
Article in English | MEDLINE | ID: mdl-27301357

ABSTRACT

IL-8 promotes cancer cell growth, survival, angiogenesis, and metastasis in several tumors. Herein, we investigated the sources of IL-8 production in multiple myeloma (MM) and its potential roles in MM pathogenesis. We found that bone marrow cells from patients with MM secreted higher amounts of IL-8 than healthy donors. IL-8 production was detected in cultures of CD138(+) plasma cells and CD138(-) cells isolated from bone marrows of MM patients, and in three of seven human myeloma cell lines (HMCLs) analyzed. Interactions between MM and stromal cells increased IL-8 secretion by stromal cells through cell-cell adhesion and soluble factors. Interestingly, IL8 expression also increased in HMCLs, stromal cells, and osteoclasts after treatment with the antimyeloma drugs melphalan and bortezomib. In fact, the effect of bortezomib on IL-8 production was higher than that exerted by stromal-MM cell interactions. Addition of exogenous IL-8 did not affect growth of HMCLs, although it protected cells from death induced by serum starvation through a caspase-independent mechanism. Furthermore, IL-8 induced by stromal-MM cell interactions strongly contributed to osteoclast formation in vitro, because osteoclastogenesis was markedly reduced by IL-8-specific neutralizing antibodies. In conclusion, our results implicate IL-8 in myeloma bone disease and point to the potential utility of an anti-IL-8 therapy to prevent unwanted effects of IL-8 up-regulation on survival, angiogenesis, and osteolysis in MM.


Subject(s)
Interleukin-8/biosynthesis , Multiple Myeloma/pathology , Osteogenesis/physiology , Cell Separation , Cell Survival , Coculture Techniques , Enzyme-Linked Immunosorbent Assay , Humans , Multiple Myeloma/metabolism , Osteoclasts/cytology , Osteoclasts/metabolism , Polymerase Chain Reaction , Stromal Cells/metabolism , Up-Regulation
20.
Blood ; 125(15): 2370-80, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25655603

ABSTRACT

Although information about the molecular pathogenesis of Waldenström macroglobulinemia (WM) has significantly advanced, the precise cell of origin and the mechanisms behind WM transformation from immunoglobulin-M (IgM) monoclonal gammopathy of undetermined significance (MGUS) remain undetermined. Here, we undertook an integrative phenotypic, molecular, and genomic approach to study clonal B cells from newly diagnosed patients with IgM MGUS (n = 22), smoldering (n = 16), and symptomatic WM (n = 11). Through principal component analysis of multidimensional flow cytometry data, we demonstrated highly overlapping phenotypic profiles for clonal B cells from IgM MGUS, smoldering, and symptomatic WM patients. Similarly, virtually no genes were significantly deregulated between fluorescence-activated cell sorter-sorted clonal B cells from the 3 disease groups. Interestingly, the transcriptome of the Waldenström B-cell clone was highly different than that of normal CD25(-)CD22(+) B cells, whereas significantly less genes were differentially expressed and specific WM pathways normalized once the transcriptome of the Waldenström B-cell clone was compared with its normal phenotypic (CD25(+)CD22(+low)) B-cell counterpart. The frequency of specific copy number abnormalities [+4, del(6q23.3-6q25.3), +12, and +18q11-18q23] progressively increased from IgM MGUS and smoldering WM vs symptomatic WM (18% vs 20% and 73%, respectively; P = .008), suggesting a multistep transformation of clonal B cells that, albeit benign (ie, IgM MGUS and smoldering WM), already harbor the phenotypic and molecular signatures of the malignant Waldenström clone.


Subject(s)
B-Lymphocytes/pathology , Cell Transformation, Neoplastic/genetics , Monoclonal Gammopathy of Undetermined Significance/genetics , Waldenstrom Macroglobulinemia/genetics , B-Lymphocytes/metabolism , Cell Transformation, Neoplastic/pathology , Clone Cells , Flow Cytometry , Gene Dosage , Gene Expression Regulation, Neoplastic , Genomics , Humans , Immunoglobulin M/analysis , Monoclonal Gammopathy of Undetermined Significance/pathology , Mutation , Myeloid Differentiation Factor 88/genetics , Phenotype , Waldenstrom Macroglobulinemia/pathology
SELECTION OF CITATIONS
SEARCH DETAIL