ABSTRACT
Singlet dioxygen has been widely applied in different disciplines such as medicine (photodynamic therapy or blood sterilization), remediation (wastewater treatment) or industrial processes (fine chemicals synthesis). Particularly, it can be conveniently generated by energy transfer between a photosensitizer's triplet state and triplet dioxygen upon irradiation with visible light. Among the best photosensitizers, substituted zinc(II) phthalocyanines are prominent due to their excellent photophysical properties, which can be tuned by structural modifications, such as halogen- and chalcogen-atom substitution. These patterns allow for the enhancement of spin-orbit coupling, commonly attributed to the heavy atom effect, which correlates with the atomic number ( Z ${Z}$ ) and the spin-orbit coupling constant ( ζ ${\zeta }$ ) of the introduced heteroatom. Herein, a fully systematic analysis of the effect exerted by chalcogen atoms on the photophysical characteristics (absorption and fluorescence properties, lifetimes and singlet dioxygen photogeneration), involving 30 custom-made ß-tetrasubstituted chalcogen-bearing zinc(II) phthalocyanines is described and evaluated regarding the heavy atom effect. Besides, the intersystem crossing rate constants are estimated by several independent methods and a quantitative profile of the heavy atom is provided by using linear correlations between relative intersystem crossing rates and relative atomic numbers. Good linear trends for both intersystem crossing rates (S1-T1 and T1-S0) were obtained, with a dependency on the atomic number and the spin-orbit coupling constant scaling as Z 0 . 4 ${{Z}^{0.4}}$ and ζ 0 . 2 ${{\zeta }^{0.2}}$ , respectively The trend shows to be independent of the solvent and temperature.
ABSTRACT
A series of four regioisomeric Pt(II) complexes (PtLa-n and PtLb-n) bearing tetradentate luminophores as dianionic ligands were synthesized. Hence, both classes of cyclometallating chelators were decorated with three n-hexyl (n = 6) or n-dodecyl (n = 12) chains. The new compounds were unambiguously characterized by means of multiple NMR spectroscopies and mass spectrometry. Steady-state and time-resolved photoluminescence spectroscopy as well quantum chemical calculations show that the effect of the regioisomerism on the emission colour and on the deactivation rate constants can be correlated with the participation of the Pt atom on the excited state. The thermal properties of the complexes were studied by DSC, POM and temperature-dependent steady-state photoluminescence spectroscopy. Three of the four complexes (PtLa-12, PtLb-6 and PtLb-12) present an intriguing thermochromism resulting from the responsive metal-metal interactions involving adjacent monomeric units. Each material has different transition temperatures and memory capabilities, which can be tuned at the intermolecular level. Hence, dipole-dipole interactions between the luminophores and disruption of the crystalline packing by the alkyl groups are responsible for the final properties of the resulting materials.
ABSTRACT
The synthesis, structure, magnetic, and photophysical properties of two dinuclear, luminescent, mixed-ligand [CrIII 2 L(O2 CR)]3+ complexes (R=CH3 (1), Ph (2)) of a 24-membered binucleating hexa-aza-dithiophenolate macrocycle (L)2- are presented. X-ray crystallographic analysis reveals an edge-sharing bioctahedral N3 Cr(µ-SR)2 (µ1,3 -O2 CR)CrN3 core structure with µ1,3 -bridging carboxylate groups. A ferromagnetic superexchange interaction between the electron spins of the Cr3+ ions leads to a high-spin (S=3) ground state. The coupling constants (J=+24.2(1)â cm-1 (1), +34.8(4)â cm-1 (2), H=-2JS1 S2 ) are significantly larger than in related bis-µ-alkoxido-µ-carboxylato structures. DFT calculations performed on both complexes reproduce both the sign and strength of the exchange interactions found experimentally. Frozen methanol-dichloromethane 1 : 1 solutions of 1 and 2 luminesce at 750â nm when excited into the 4 LMCT state on the 4 A2 â 2 T1 (ν2 ) bands (λexc =405â nm). The absolute quantum yields (ΦL ) for 1 and 2 were found to be strongly temperature dependent. At 77â K in frozen MeOH/CH2 Cl2 glasses, ΦL =0.44±0.02 (for 1), ΦL =0.45±0.02 (for 2).
ABSTRACT
Rotaxanes are mechanically interlocked molecules where a ring (macrocycle) is threaded onto a linear molecule (thread). The position of the macrocycle on different stations on the thread can be controlled in response to external stimuli, making rotaxanes applicable as molecular switches. Here we show that bistable rotaxanes based on the combination of a Zn(II) tetraphenylporphyrin photosensitizer, attached to the macrocycle, and a black-hole-quencher, attached to the thread, are capable of singlet oxygen production which can be switched on/off by the addition of base/acid. However, we found that only a sufficiently long linker between both stations on the thread enabled switchability, and that the direction of switching was inversed with regard to the original design. This unexpected behavior was attributed to intramolecular folding of the rotaxanes, as indicated by extensive theoretical calculations. This evidences the importance to take into account the conformational flexibility of large molecular structures when designing functional switchable systems.
ABSTRACT
A series of Pd(II) (PdLOMe, PdLOHex) and Pt(II) (PtLOMe, PtLOHex) complexes bearing tetradentate ligands as dianionic luminophores were synthesized. Hence, the cyclometallating chelators were alternatively decorated with two n-hexyloxy (LOHex) or two methoxy (LOMe) moieties to promote crystallization and processability. The new compounds were unambiguously characterized by means of multiple NMR spectroscopies and mass spectrometry as well as by single crystal X-ray diffractometric analysis (PtLOMe and PdLOMe). Steady state and time-resolved photoluminescence spectroscopic studies were carried out in crystalline phases, in fluid solutions at room temperature, in frozen glassy matrices at 77 K and in a flexible polymeric matrix (PMMA). PtLOMe presents an intriguing mechanochromism resulting from the responsive metal-metal interactions involving adjacent monomeric units. Incorporation of the Pd(II) complexes into the polymeric matrix boosts their photophysical properties by stiffening of the coordination environment while reducing non-radiative deactivation pathways mediated by dissociative metal-centred states, which also become thermally inaccessible at 77 K.
ABSTRACT
In this work, we describe the synthesis, structural and photophysical characterization of four novel Pd(ii) and Pt(ii) complexes bearing tetradentate luminophoric ligands with high photoluminescence quantum yields (Φ L) and long excited state lifetimes (τ) at room temperature, where the results were interpreted by means of DFT calculations. Incorporation of fluorine atoms into the tetradentate ligand favors aggregation and thereby, a shortened average distance between the metal centers, which provides accessibility to metal-metal-to-ligand charge-transfer (3MMLCT) excimers acting as red-shifted energy traps if compared with the monomeric entities. This supramolecular approach provides an elegant way to enable room-temperature phosphorescence from Pd(ii) complexes, which are otherwise quenched by a thermal population of dissociative states due to a lower ligand field splitting. Encapsulation of these complexes in 100 nm-sized aminated polystyrene nanoparticles enables concentration-controlled aggregation-enhanced dual emission. This phenomenon facilitates the tunability of the absorption and emission colors while providing a rigidified environment supporting an enhanced Φ L up to about 80% and extended τ exceeding 100 µs. Additionally, these nanoarrays constitute rare examples for self-referenced oxygen reporters, since the phosphorescence of the aggregates is insensitive to external influences, whereas the monomeric species drop in luminescence lifetime and intensity with increasing triplet molecular dioxygen concentrations (diffusion-controlled quenching).
ABSTRACT
The lanthanide binding ability of a macrocyclic ligand H6L2 comprising two bis(iminomethyl)phenol and two calix[4]arene units has been studied. H6L2 is a ditopic ligand which provides dinuclear neutral complexes of composition [Ln2(L2)(MeOH)2] (Ln = La (1), Eu (2), Tb (3), and Yb (4)) in very good yield. X-ray crystal structure analyses for 2 and 3 show that (L2)6- accommodates two seven coordinated lanthanide ions in a distorted monocapped trigonal prismatic/octahedral coordination environment. UV-vis spectroscopic titrations performed with La3+, Eu3+, Tb3+ and Yb3+ ions in mixed MeOH/CH2Cl2 solution (I = 0.01 M NBu4PF6) reveal that a 2 : 1 (metal : ligand) stoichiometry is present in solution, with log K11 and K21 values ranging from 5.25 to 6.64. The ratio α = K11/K21 of the stepwise formation constants for the mononuclear (L2 + M = ML2, log K11) and the dinuclear complexes (ML2 + M = M2L2, log K21) was found to be invariably smaller than unity indicating that the binding of the first Ln3+ ion augments the binding of the second Ln3+ ion. The present complexes are less luminescent than other seven-coordinated Eu and Tb complexes, which can be traced to vibrational relaxation of excited EuIII and TbIII states by the coligated MeOH and H2O molecules and/or low-lying ligand-to-metal charge-transfer (LMCT) states.
ABSTRACT
The crystalline structures of four homologues of the 1,2-dibromo-4,5-dialkoxybenzene series [Br2C6H2(OCnH2nâ +â 1)2 for n = 2, 12, 14 and 18] have been solved by means of single-crystal crystallography. Comparison along the series, including the previously reported n = 10 and n = 16 derivatives, shows a clear metric trend (b and c essentially fixed along the series and a growing linearly with n), in spite of some subtle differences in space groups and/or packing modes. A uniform packing pattern for the aliphatic chains has been found for the n = 12 to 18 homologues, which slightly differs from that of the n = 10 derivative. The crystalline structures of all the higher homologues (n = 10-18) seem to arise from van der Waals interchain interactions and, to a lesser extent, type II Br...Br interactions. The dominant role of interchain interactions provides direct structural support for the usual interpretation of melting point trends like that found along this series. Atoms in Molecules (AIM) analysis allows a comparison of the relative magnitude of the interchain and Br...Br interactions, an analysis validated by the measured melting enthalpies.