Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Immunity ; 57(7): 1514-1532.e15, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38788712

ABSTRACT

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions as a critical stress sentinel that coordinates cell survival, inflammation, and immunogenic cell death (ICD). Although the catalytic function of RIPK1 is required to trigger cell death, its non-catalytic scaffold function mediates strong pro-survival signaling. Accordingly, cancer cells can hijack RIPK1 to block necroptosis and evade immune detection. We generated a small-molecule proteolysis-targeting chimera (PROTAC) that selectively degraded human and murine RIPK1. PROTAC-mediated depletion of RIPK1 deregulated TNFR1 and TLR3/4 signaling hubs, accentuating the output of NF-κB, MAPK, and IFN signaling. Additionally, RIPK1 degradation simultaneously promoted RIPK3 activation and necroptosis induction. We further demonstrated that RIPK1 degradation enhanced the immunostimulatory effects of radio- and immunotherapy by sensitizing cancer cells to treatment-induced TNF and interferons. This promoted ICD, antitumor immunity, and durable treatment responses. Consequently, targeting RIPK1 by PROTACs emerges as a promising approach to overcome radio- or immunotherapy resistance and enhance anticancer therapies.


Subject(s)
Immunogenic Cell Death , Proteolysis , Receptor-Interacting Protein Serine-Threonine Kinases , Signal Transduction , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Humans , Animals , Mice , Proteolysis/drug effects , Cell Line, Tumor , Signal Transduction/drug effects , Immunogenic Cell Death/drug effects , Necroptosis/drug effects , Necroptosis/immunology , Neoplasms/immunology , Neoplasms/drug therapy , Mice, Inbred C57BL , Antineoplastic Agents/pharmacology , Immunotherapy/methods
3.
EMBO J ; 43(6): 904-930, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38337057

ABSTRACT

Mitochondrial outer membrane permeabilisation (MOMP) is often essential for apoptosis, by enabling cytochrome c release that leads to caspase activation and rapid cell death. Recently, MOMP has been shown to be inherently pro-inflammatory with emerging cellular roles, including its ability to elicit anti-tumour immunity. Nonetheless, how MOMP triggers inflammation and how the cell regulates this remains poorly defined. We find that upon MOMP, many proteins localised either to inner or outer mitochondrial membranes are ubiquitylated in a promiscuous manner. This extensive ubiquitylation serves to recruit the essential adaptor molecule NEMO, leading to the activation of pro-inflammatory NF-κB signalling. We show that disruption of mitochondrial outer membrane integrity through different means leads to the engagement of a similar pro-inflammatory signalling platform. Therefore, mitochondrial integrity directly controls inflammation, such that permeabilised mitochondria initiate NF-κB signalling.


Subject(s)
NF-kappa B , Ubiquitin , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Ubiquitin/metabolism , Mitochondrial Membranes/metabolism , Mitochondria/metabolism , Apoptosis/physiology , Inflammation/metabolism
4.
Cell ; 153(6): 1312-26, 2013 Jun 06.
Article in English | MEDLINE | ID: mdl-23746843

ABSTRACT

The linear ubiquitin (Ub) chain assembly complex (LUBAC) is an E3 ligase that specifically assembles Met1-linked (also known as linear) Ub chains that regulate nuclear factor κB (NF-κB) signaling. Deubiquitinases (DUBs) are key regulators of Ub signaling, but a dedicated DUB for Met1 linkages has not been identified. Here, we reveal a previously unannotated human DUB, OTULIN (also known as FAM105B), which is exquisitely specific for Met1 linkages. Crystal structures of the OTULIN catalytic domain in complex with diubiquitin reveal Met1-specific Ub-binding sites and a mechanism of substrate-assisted catalysis in which the proximal Ub activates the catalytic triad of the protease. Mutation of Ub Glu16 inhibits OTULIN activity by reducing kcat 240-fold. OTULIN overexpression or knockdown affects NF-κB responses to LUBAC, TNFα, and poly(I:C) and sensitizes cells to TNFα-induced cell death. We show that OTULIN binds LUBAC and that overexpression of OTULIN prevents TNFα-induced NEMO association with ubiquitinated RIPK1. Our data suggest that OTULIN regulates Met1-polyUb signaling.


Subject(s)
Endopeptidases/chemistry , Endopeptidases/metabolism , Amino Acid Sequence , Animals , Catalysis , Crystallography, X-Ray , Cytokines/metabolism , Endopeptidases/genetics , Humans , Models, Molecular , Molecular Sequence Data , Polyubiquitin/biosynthesis , Protein Structure, Tertiary , Sequence Alignment , Signal Transduction
5.
Mol Cell ; 68(2): 265-280, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29053955

ABSTRACT

The linear ubiquitin chain assembly complex, LUBAC, is the only known mammalian ubiquitin ligase that makes methionine 1 (Met1)-linked polyubiquitin (also referred to as linear ubiquitin). A decade after LUBAC was discovered as a cellular activity of unknown function, there are now many lines of evidence connecting Met1-linked polyubiquitin to NF-κB signaling, cell death, inflammation, immunity, and cancer. We now know that Met1-linked polyubiquitin has potent signaling functions and that its deregulation is connected to disease. Indeed, mutations and deficiencies in several factors involved in conjugation and deconjugation of Met1-linked polyubiquitin have been implicated in immune-related disorders. Here, we discuss current knowledge and recent insights into the role and regulation of Met1-linked polyubiquitin, with an emphasis on the mechanisms controlling the function of LUBAC.


Subject(s)
Immunity , NF-kappa B/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Polyubiquitin/metabolism , Signal Transduction , Animals , Cell Death , Humans , NF-kappa B/genetics , NF-kappa B/immunology , Neoplasm Proteins/immunology , Neoplasms/immunology , Polyubiquitin/genetics , Polyubiquitin/immunology
6.
EMBO Rep ; 23(12): e55839, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36268590

ABSTRACT

ZBP1 is an interferon-induced cytosolic nucleic acid sensor that facilitates antiviral responses via RIPK3. Although ZBP1-mediated programmed cell death is widely described, whether and how it promotes inflammatory signaling is unclear. Here, we report a ZBP1-induced inflammatory signaling pathway mediated by K63- and M1-linked ubiquitin chains, which depends on RIPK1 and RIPK3 as scaffolds independently of cell death. In human HT29 cells, ZBP1 associated with RIPK1 and RIPK3 as well as ubiquitin ligases cIAP1 and LUBAC. ZBP1-induced K63- and M1-linked ubiquitination of RIPK1 and ZBP1 to promote TAK1- and IKK-mediated inflammatory signaling and cytokine production. Inhibition of caspase activity suppressed ZBP1-induced cell death but enhanced cytokine production in a RIPK1- and RIPK3 kinase activity-dependent manner. Lastly, we provide evidence that ZBP1 signaling contributes to SARS-CoV-2-induced cytokine production. Taken together, we describe a ZBP1-RIPK3-RIPK1-mediated inflammatory signaling pathway relayed by the scaffolding role of RIPKs and regulated by caspases, which may induce inflammation when ZBP1 is activated below the threshold needed to trigger a cell death response.


Subject(s)
Cell Death , RNA-Binding Proteins , Receptor-Interacting Protein Serine-Threonine Kinases , Humans , Cytokines , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Signal Transduction , Ubiquitin , RNA-Binding Proteins/genetics , HT29 Cells , Inflammation
7.
Mol Cell ; 63(6): 990-1005, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27591049

ABSTRACT

The linear ubiquitin chain assembly complex (LUBAC) regulates immune signaling, and its function is regulated by the deubiquitinases OTULIN and CYLD, which associate with the catalytic subunit HOIP. However, the mechanism through which CYLD interacts with HOIP is unclear. We here show that CYLD interacts with HOIP via spermatogenesis-associated protein 2 (SPATA2). SPATA2 interacts with CYLD through its non-canonical PUB domain, which binds the catalytic CYLD USP domain in a CYLD B-box-dependent manner. Significantly, SPATA2 binding activates CYLD-mediated hydrolysis of ubiquitin chains. SPATA2 also harbors a conserved PUB-interacting motif that selectively docks into the HOIP PUB domain. In cells, SPATA2 is recruited to the TNF receptor 1 signaling complex and is required for CYLD recruitment. Loss of SPATA2 increases ubiquitination of LUBAC substrates and results in enhanced NOD2 signaling. Our data reveal SPATA2 as a high-affinity binding partner of CYLD and HOIP, and a regulatory component of LUBAC-mediated NF-κB signaling.


Subject(s)
NF-kappa B/chemistry , Proteins/chemistry , Tumor Suppressor Proteins/chemistry , Ubiquitin-Protein Ligases/chemistry , Ubiquitin/chemistry , Amino Acid Sequence , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Deubiquitinating Enzyme CYLD , Endopeptidases/chemistry , Endopeptidases/genetics , Endopeptidases/immunology , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Gene Expression Regulation , Humans , Immunity, Innate , Kinetics , Molecular Docking Simulation , NF-kappa B/genetics , NF-kappa B/immunology , Nod2 Signaling Adaptor Protein/chemistry , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/immunology , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Proteins/genetics , Proteins/immunology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Substrate Specificity , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/immunology , Ubiquitin/genetics , Ubiquitin/immunology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/immunology
8.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34074763

ABSTRACT

Maintaining stable tryptophan levels is required to control neuronal and immune activity. We report that tryptophan homeostasis is largely controlled by the stability of tryptophan 2,3-dioxygenase (TDO), the hepatic enzyme responsible for tryptophan catabolism. High tryptophan levels stabilize the active tetrameric conformation of TDO through binding noncatalytic exosites, resulting in rapid catabolism of tryptophan. In low tryptophan, the lack of tryptophan binding in the exosites destabilizes the tetramer into inactive monomers and dimers and unmasks a four-amino acid degron that triggers TDO polyubiquitination by SKP1-CUL1-F-box complexes, resulting in proteasome-mediated degradation of TDO and rapid interruption of tryptophan catabolism. The nonmetabolizable analog alpha-methyl-tryptophan stabilizes tetrameric TDO and thereby stably reduces tryptophanemia. Our results uncover a mechanism allowing a rapid adaptation of tryptophan catabolism to ensure quick degradation of excess tryptophan while preventing further catabolism below physiological levels. This ensures a tight control of tryptophanemia as required for both neurological and immune homeostasis.


Subject(s)
Tryptophan Oxygenase/metabolism , Tryptophan/blood , Tryptophan/metabolism , Ubiquitination , Animals , HEK293 Cells , Homeostasis , Humans , Mice , Mice, Inbred C57BL , Tryptophan/analogs & derivatives
9.
Semin Cell Dev Biol ; 109: 144-150, 2021 01.
Article in English | MEDLINE | ID: mdl-32631784

ABSTRACT

The receptor-interacting protein kinases (RIPKs) are key regulators of inflammatory signalling and cell death pathways triggered by innate immune receptors, and RIPKs have emerged as promising therapeutic targets for treatment of immune-related disorders. RIPK2 mediates signalling responses initiated by the bacterial-sensing pattern recognition receptors nucleotide-binding oligomerization domain-containing proteins 1 and 2 (NOD1/2), which play a key role in regulation of intestinal immunity and inflammation. Modification of RIPK2 by non-degradative ubiquitin chains generated by the E3 ubiquitin ligase XIAP and other ligases govern NOD1/2 signalling. Recent advances suggest that the interaction between RIPK2 and XIAP is a druggable protein-protein interaction to modulate NOD1/2-dependent immune responses. Here, we discuss the mechanistic function of RIPK2 in immune signalling, its clinical relevance, and the on-going efforts to target RIPK2 in inflammatory bowel disease and beyond.


Subject(s)
Inflammatory Bowel Diseases/genetics , Nod1 Signaling Adaptor Protein/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , X-Linked Inhibitor of Apoptosis Protein/metabolism , Humans , Inflammatory Bowel Diseases/pathology
10.
EMBO J ; 37(17)2018 09 03.
Article in English | MEDLINE | ID: mdl-30026309

ABSTRACT

RIPK2 mediates inflammatory signaling by the bacteria-sensing receptors NOD1 and NOD2. Kinase inhibitors targeting RIPK2 are a proposed strategy to ameliorate NOD-mediated pathologies. Here, we reveal that RIPK2 kinase activity is dispensable for NOD2 inflammatory signaling and show that RIPK2 inhibitors function instead by antagonizing XIAP-binding and XIAP-mediated ubiquitination of RIPK2. We map the XIAP binding site on RIPK2 to the loop between ß2 and ß3 of the N-lobe of the kinase, which is in close proximity to the ATP-binding pocket. Through characterization of a new series of ATP pocket-binding RIPK2 inhibitors, we identify the molecular features that determine their inhibition of both the RIPK2-XIAP interaction, and of cellular and in vivoNOD2 signaling. Our study exemplifies how targeting of the ATP-binding pocket in RIPK2 can be exploited to interfere with the RIPK2-XIAP interaction for modulation of NOD signaling.


Subject(s)
Nod2 Signaling Adaptor Protein/metabolism , Protein Kinase Inhibitors/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinase 2/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinases/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Cell Line, Tumor , Female , Humans , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Mice , Nod2 Signaling Adaptor Protein/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Signal Transduction/genetics , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/metabolism
11.
EMBO J ; 37(8)2018 04 13.
Article in English | MEDLINE | ID: mdl-29496741

ABSTRACT

Negative regulation of immune pathways is essential to achieve resolution of immune responses and to avoid excess inflammation. DNA stimulates type I IFN expression through the DNA sensor cGAS, the second messenger cGAMP, and the adaptor molecule STING Here, we report that STING degradation following activation of the pathway occurs through autophagy and is mediated by p62/SQSTM1, which is phosphorylated by TBK1 to direct ubiquitinated STING to autophagosomes. Degradation of STING was impaired in p62-deficient cells, which responded with elevated IFN production to foreign DNA and DNA pathogens. In the absence of p62, STING failed to traffic to autophagy-associated vesicles. Thus, DNA sensing induces the cGAS-STING pathway to activate TBK1, which phosphorylates IRF3 to induce IFN expression, but also phosphorylates p62 to stimulate STING degradation and attenuation of the response.


Subject(s)
Nucleotidyltransferases/physiology , Protein Serine-Threonine Kinases/physiology , Sequestosome-1 Protein/physiology , Animals , Autophagy , Cell Line , DNA/metabolism , Humans , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction
12.
Mol Cell ; 54(3): 335-48, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24726323

ABSTRACT

The linear ubiquitin (Ub) chain assembly complex (LUBAC) generates Met1-linked "linear" Ub chains that regulate the activation of the nuclear factor κB (NFκB) transcription factor and other processes. We recently discovered OTULIN as a deubiquitinase that specifically cleaves Met1-linked polyUb. Now, we show that OTULIN binds via a conserved PUB-interacting motif (PIM) to the PUB domain of the LUBAC component HOIP. Crystal structures and nuclear magnetic resonance experiments reveal the molecular basis for the high-affinity interaction and explain why OTULIN binds the HOIP PUB domain specifically. Analysis of LUBAC-induced NFκB signaling suggests that OTULIN needs to be present on LUBAC in order to restrict Met1-polyUb signaling. Moreover, LUBAC-OTULIN complex formation is regulated by OTULIN phosphorylation in the PIM. Phosphorylation of OTULIN prevents HOIP binding, whereas unphosphorylated OTULIN is part of the endogenous LUBAC complex. Our work exemplifies how coordination of ubiquitin assembly and disassembly activities in protein complexes regulates individual Ub linkage types.


Subject(s)
Endopeptidases/chemistry , Ubiquitin-Protein Ligases/chemistry , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , Endopeptidases/metabolism , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Protein Structure, Secondary , Ubiquitin-Protein Ligases/metabolism
13.
Mol Cell ; 50(6): 818-830, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23806334

ABSTRACT

Conjugation of Met1-linked polyubiquitin (Met1-Ub) by the linear ubiquitin chain assembly complex (LUBAC) is an important regulatory modification in innate immune signaling. So far, only few Met1-Ub substrates have been described, and the regulatory mechanisms have remained elusive. We recently identified that the ovarian tumor (OTU) family deubiquitinase OTULIN specifically disassembles Met1-Ub. Here, we report that OTULIN is critical for limiting Met1-Ub accumulation after nucleotide-oligomerization domain-containing protein 2 (NOD2) stimulation, and that OTULIN depletion augments signaling downstream of NOD2. Affinity purification of Met1-Ub followed by quantitative proteomics uncovered RIPK2 as the predominant NOD2-regulated substrate. Accordingly, Met1-Ub on RIPK2 was largely inhibited by overexpressing OTULIN and was increased by OTULIN depletion. Intriguingly, OTULIN-depleted cells spontaneously accumulated Met1-Ub on LUBAC components, and NOD2 or TNFR1 stimulation led to extensive Met1-Ub accumulation on receptor complex components. We propose that OTULIN restricts Met1-Ub formation after immune receptor stimulation to prevent unwarranted proinflammatory signaling.


Subject(s)
Endopeptidases/physiology , Immunity, Innate , Methionine/metabolism , Signal Transduction , Ubiquitination , Gene Expression , Gene Knockdown Techniques , HEK293 Cells , Humans , Inflammation Mediators/metabolism , NF-kappa B/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Protein Interaction Mapping , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , X-Linked Inhibitor of Apoptosis Protein/metabolism
14.
Mol Cell ; 46(6): 746-58, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-22607974

ABSTRACT

Nucleotide-binding and oligomerization domain (NOD)-like receptors constitute a first line of defense against invading bacteria. X-linked Inhibitor of Apoptosis (XIAP) is implicated in the control of bacterial infections, and mutations in XIAP are causally linked to immunodeficiency in X-linked lymphoproliferative syndrome type-2 (XLP-2). Here, we demonstrate that the RING domain of XIAP is essential for NOD2 signaling and that XIAP contributes to exacerbation of inflammation-induced hepatitis in experimental mice. We find that XIAP ubiquitylates RIPK2 and recruits the linear ubiquitin chain assembly complex (LUBAC) to NOD2. We further show that LUBAC activity is required for efficient NF-κB activation and secretion of proinflammatory cytokines after NOD2 stimulation. Remarkably, XLP-2-derived XIAP variants have impaired ubiquitin ligase activity, fail to ubiquitylate RIPK2, and cannot facilitate NOD2 signaling. We conclude that XIAP and LUBAC constitute essential ubiquitin ligases in NOD2-mediated inflammatory signaling and propose that deregulation of NOD2 signaling contributes to XLP-2 pathogenesis.


Subject(s)
Immunity, Innate , Inflammation/immunology , Nod2 Signaling Adaptor Protein/metabolism , X-Linked Inhibitor of Apoptosis Protein/genetics , Animals , Female , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nod2 Signaling Adaptor Protein/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/genetics , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Signal Transduction , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , X-Linked Inhibitor of Apoptosis Protein/metabolism
15.
Gut ; 66(6): 1060-1073, 2017 06.
Article in English | MEDLINE | ID: mdl-26953272

ABSTRACT

OBJECTIVE: Patients with Niemann-Pick disease type C1 (NPC1), a lysosomal lipid storage disorder that causes neurodegeneration and liver damage, can present with IBD, but neither the significance nor the functional mechanism of this association is clear. We studied bacterial handling and antibacterial autophagy in patients with NPC1. DESIGN: We characterised intestinal inflammation in 14 patients with NPC1 who developed IBD. We investigated bacterial handling and cytokine production of NPC1 monocytes or macrophages in vitro and compared NPC1-associated functional defects to those caused by IBD-associated nucleotide-binding oligomerization domain-containing protein 2 (NOD2) variants or mutations in X-linked inhibitor of apoptosis (XIAP). RESULTS: Patients with the lysosomal lipid storage disorder NPC1 have increased susceptibility to early-onset fistulising colitis with granuloma formation, reminiscent of Crohn's disease (CD). Mutations in NPC1 cause impaired autophagy due to defective autophagosome function that abolishes NOD2-mediated bacterial handling in vitro similar to variants in NOD2 or XIAP deficiency. In contrast to genetic NOD2 and XIAP variants, NPC1 mutations do not impair NOD2-receptor-interacting kinase 2 (RIPK2)-XIAP-dependent cytokine production. Pharmacological activation of autophagy can rescue bacterial clearance in macrophages in vitro by increasing the autophagic flux and bypassing defects in NPC1. CONCLUSIONS: NPC1 confers increased risk of early-onset severe CD. Our data support the concept that genetic defects at different checkpoints of selective autophagy cause a shared outcome of CD-like immunopathology linking monogenic and polygenic forms of IBD. Muramyl dipeptide-driven cytokine responses and antibacterial autophagy induction are parallel and independent signalling cascades downstream of the NOD2-RIPK2-XIAP complex.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine/metabolism , Autophagy/genetics , Crohn Disease/genetics , Granuloma/genetics , Macrophages/drug effects , Niemann-Pick Disease, Type C/genetics , Niemann-Pick Disease, Type C/physiopathology , Nod2 Signaling Adaptor Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/genetics , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Adolescent , Adult , Anti-Bacterial Agents/pharmacology , Autophagy/drug effects , Bacteria , Cells, Cultured , Child , Child, Preschool , Chlorpromazine/pharmacology , Crohn Disease/complications , Crohn Disease/pathology , Dopamine Antagonists/pharmacology , Female , Genetic Diseases, X-Linked/genetics , Gentamicins/pharmacology , Granuloma/pathology , Humans , Imidazoles/pharmacology , Leukocytes, Mononuclear , Lysosomes , Macrophages/physiology , Male , Mutation , Niemann-Pick Disease, Type C/complications , Nod2 Signaling Adaptor Protein/metabolism , Protein Kinase Inhibitors/pharmacology , Pyridazines/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinase 2/antagonists & inhibitors , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Tumor Necrosis Factor-alpha/metabolism , X-Linked Inhibitor of Apoptosis Protein/deficiency , X-Linked Inhibitor of Apoptosis Protein/metabolism , Young Adult
16.
J Clin Immunol ; 35(5): 439-44, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25943627

ABSTRACT

PURPOSE: X-linked inhibitor of apoptosis (XIAP) deficiency caused by mutations in BIRC4 was originally described in male patients with X-linked lymphoproliferative syndrome type 2 (XLP2). Recent observations have highlighted a critical role of XIAP for the regulation of NOD2 signaling and are probably the molecular basis for increasingly recognized further immune dysregulatory symptoms of XIAP deficient patients, such as inflammatory bowel disease (IBD). We describe a large Caucasian family in which IBD and erythema nodosum (EN) also manifested in female carriers of XIAP mutations. METHODS: Clinical data and laboratory findings including flow cytometric analysis of XIAP protein expression and sequencing of the BIRC4 gene. NOD2 signaling was investigated by determination of TNFα production in monocytes upon L18-MDP stimulation in vitro. RESULTS: The BIRC4 nonsense mutation p.P225SfsX226 was identified as the genetic cause of XIAP deficiency in our family. Surprisingly, clinical symptoms were not restricted to male patients, but also occurred in several female carriers. The most severely affected carrier demonstrated random X-inactivation, leading to a significant expression of mutated XIAP protein in monocytes, and consequently to impaired NOD2 responses in vitro. CONCLUSION: Our report provides further evidence that clinical symptoms of XIAP deficiency are not restricted to male patients. Random X-inactivation may be associated with EN and mild IBD also in female carriers of BIRC4 mutations. Analysis of the X-inactivation pattern reflected by XIAP protein expression can identify such carriers and the analysis of NOD2 signaling by flow cytometry can confirm the functional significance. XIAP expression patterns should be investigated in female patients with a family history of EN and/or IBD.


Subject(s)
Erythema Nodosum/diagnosis , Genetic Diseases, X-Linked/diagnosis , Inflammatory Bowel Diseases/diagnosis , Lymphoproliferative Disorders/diagnosis , Monocytes/metabolism , Virus Diseases/diagnosis , X-Linked Inhibitor of Apoptosis Protein/genetics , Acetylmuramyl-Alanyl-Isoglutamine/analogs & derivatives , Acetylmuramyl-Alanyl-Isoglutamine/immunology , Adult , Aged , Aged, 80 and over , Carrier State , Cells, Cultured , Child , Child, Preschool , Erythema Nodosum/etiology , Erythema Nodosum/genetics , Fatal Outcome , Female , Genetic Diseases, X-Linked/complications , Genetic Diseases, X-Linked/genetics , Humans , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/genetics , Lymphoproliferative Disorders/complications , Lymphoproliferative Disorders/genetics , Male , Middle Aged , Monocytes/immunology , Mutation/genetics , Nod2 Signaling Adaptor Protein/metabolism , Pedigree , Sex Factors , Signal Transduction/genetics , Tumor Necrosis Factor-alpha/metabolism , Virus Diseases/etiology , Virus Diseases/genetics , White People
17.
Cell Death Differ ; 28(2): 557-569, 2021 02.
Article in English | MEDLINE | ID: mdl-33473179

ABSTRACT

Ubiquitination is an essential post-translational modification that regulates most cellular processes. The assembly of ubiquitin into polymeric chains by E3 ubiquitin ligases underlies the pleiotropic functions ubiquitin chains regulate. Ubiquitin chains assembled via the N-terminal methionine, termed Met1-linked ubiquitin chains or linear ubiquitin chains, have emerged as essential signalling scaffolds that regulate pro-inflammatory responses, anti-viral interferon responses, cell death and xenophagy of bacterial pathogens downstream of innate immune receptors. Met1-linked ubiquitin chains are exclusively assembled by the linear ubiquitin chain assembly complex, LUBAC, and are disassembled by the deubiquitinases OTULIN and CYLD. Genetic defects that perturb the regulation of Met1-linked ubiquitin chains causes severe immune-related disorders, illustrating their potent signalling capacity. Here, we review the current knowledge about the cellular machinery that conjugates, recognises, and disassembles Met1-linked ubiquitin chains, and discuss the function of this unique posttranslational modification in regulating inflammation, cell death and immunity to pathogens.


Subject(s)
Immunity , Infections/metabolism , Inflammation/metabolism , Polyubiquitin/metabolism , Signal Transduction , Animals , Cell Death , Humans , Infections/immunology , Inflammation/immunology , Polyubiquitin/immunology , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
18.
Eur J Med Chem ; 215: 113252, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33601309

ABSTRACT

Receptor interacting protein kinase-2 (RIPK2) is an enzyme involved in the transduction of pro-inflammatory nucleotide-binding oligomerization domain (NOD) cell signaling, a pathway implicated in numerous chronic inflammatory conditions. Herein, a pyrido[2,3-d]pyrimidin-7-one based class of RIPK2 kinase and NOD2 cell signaling inhibitors is described. For example, 33 (e.g. UH15-15) inhibited RIPK2 kinase (IC50 = 8 ± 4 nM) and displayed > 300-fold selectivity versus structurally related activin receptor-like kinase 2 (ALK2). This molecule blocked NOD2-dependent HEKBlue NF-κB activation (IC50 = 20 ± 5 nM) and CXCL8 production (at concentrations > 10 nM). Molecular docking suggests that engagement of Ser25 in the glycine-rich loop may provide increased selectivity versus ALK2 and optimal occupancy of the region between the gatekeeper and the αC-helix may contribute to potent NOD2 cell signaling inhibition. Finally, this compound also demonstrated favorable in vitro ADME and pharmacokinetic properties (e.g. Cmax = 5.7 µM, Tmax = 15 min, t1/2 = 3.4 h and Cl = 45 mL/min/kg following single 10 mg/kg intraperitoneal administration) further supporting the use of pyrido[2,3-d]pyrimidin-7-ones as a new structure class of RIPK2 kinase and NOD cell signaling inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Nod2 Signaling Adaptor Protein/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Pyrimidinones/pharmacology , Receptor-Interacting Protein Serine-Threonine Kinase 2/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Line, Tumor , Drug Design , Humans , Molecular Docking Simulation , Nod2 Signaling Adaptor Protein/chemistry , Nod2 Signaling Adaptor Protein/metabolism , Protein Binding , Protein Domains , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Pyridines/chemical synthesis , Pyridines/metabolism , Pyrimidinones/chemical synthesis , Pyrimidinones/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/chemistry , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Signal Transduction/drug effects
19.
Cell Rep ; 37(1): 109777, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34610306

ABSTRACT

Non-degradative ubiquitin chains and phosphorylation events govern signaling responses by innate immune receptors. The deubiquitinase CYLD in complex with SPATA2 is recruited to receptor signaling complexes by the ubiquitin ligase LUBAC and regulates Met1- and Lys63-linked polyubiquitin and receptor signaling outcomes. Here, we investigate the molecular determinants of CYLD activity. We reveal that two CAP-Gly domains in CYLD are ubiquitin-binding domains and demonstrate a requirement of CAP-Gly3 for CYLD activity and regulation of immune receptor signaling. Moreover, we identify a phosphorylation switch outside of the catalytic USP domain, which activates CYLD toward Lys63-linked polyubiquitin. The phosphorylated residue Ser568 is a novel tumor necrosis factor (TNF)-regulated phosphorylation site in CYLD and works in concert with Ser418 to enable CYLD-mediated deubiquitination and immune receptor signaling. We propose that phosphorylated CYLD, together with SPATA2 and LUBAC, functions as a ubiquitin-editing complex that balances Lys63- and Met1-linked polyubiquitin at receptor signaling complexes to promote LUBAC signaling.


Subject(s)
Deubiquitinating Enzyme CYLD/metabolism , Cell Line, Tumor , Crystallography, X-Ray , Deubiquitinating Enzyme CYLD/antagonists & inhibitors , Deubiquitinating Enzyme CYLD/genetics , Endopeptidases/chemistry , Endopeptidases/genetics , Endopeptidases/metabolism , Humans , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , Phosphorylation , Polyubiquitin/metabolism , Protein Binding , Protein Domains , Protein Structure, Tertiary , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Ubiquitin/metabolism
20.
J Exp Med ; 200(4): 425-35, 2004 Aug 16.
Article in English | MEDLINE | ID: mdl-15314073

ABSTRACT

Heat shock protein 70 (Hsp70) is a potent survival protein whose depletion triggers massive caspase-independent tumor cell death. Here, we show that Hsp70 exerts its prosurvival function by inhibiting lysosomal membrane permeabilization. The cell death induced by Hsp70 depletion was preceded by the release of lysosomal enzymes into the cytosol and inhibited by pharmacological inhibitors of lysosomal cysteine proteases. Accordingly, the Hsp70-mediated protection against various death stimuli in Hsp70-expressing human tumor cells as well as in immortalized Hsp70 transgenic murine fibroblasts occurred at the level of the lysosomal permeabilization. On the contrary, Hsp70 failed to inhibit the cytochrome c-induced, apoptosome-dependent caspase activation in vitro and Fas ligand-induced, caspase-dependent apoptosis in immortalized fibroblasts. Immunoelectron microscopy revealed that endosomal and lysosomal membranes of tumor cells contained Hsp70. Permeabilization of purified endo/lysosomes by digitonin failed to release Hsp70, suggesting that it is physically associated with the membranes. Finally, Hsp70 positive lysosomes displayed increased size and resistance against chemical and physical membrane destabilization. These data identify Hsp70 as the first survival protein that functions by inhibiting the death-associated permeabilization of lysosomes.


Subject(s)
Apoptosis/physiology , Cell Membrane Permeability/physiology , HSP70 Heat-Shock Proteins/metabolism , Lysosomes/physiology , Animals , Caspases/metabolism , Cathepsins/metabolism , Cell Survival/physiology , HeLa Cells , Humans , Immunoblotting , Lysosomes/metabolism , Mice , Microscopy, Immunoelectron , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL