Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters

Publication year range
1.
Acta Neuropathol ; 147(1): 21, 2024 01 20.
Article in English | MEDLINE | ID: mdl-38244080

ABSTRACT

The longitudinal transition of phenotypes is pivotal in glioblastoma treatment resistance and DNA methylation emerged as an important tool for classifying glioblastoma phenotypes. We aimed to characterize DNA methylation subclass heterogeneity during progression and assess its clinical impact. Matched tissues from 47 glioblastoma patients were subjected to DNA methylation profiling, including CpG-site alterations, tissue and serum deconvolution, mass spectrometry, and immunoassay. Effects of clinical characteristics on temporal changes and outcomes were studied. Among 47 patients, 8 (17.0%) had non-matching classifications at recurrence. In the remaining 39 cases, 28.2% showed dominant DNA methylation subclass transitions, with 72.7% being a mesenchymal subclass. In general, glioblastomas with a subclass transition showed upregulated metabolic processes. Newly diagnosed glioblastomas with mesenchymal transition displayed increased stem cell-like states and decreased immune components at diagnosis and exhibited elevated immune signatures and cytokine levels in serum. In contrast, tissue of recurrent glioblastomas with mesenchymal transition showed increased immune components but decreased stem cell-like states. Survival analyses revealed comparable outcomes for patients with and without subclass transitions. This study demonstrates a temporal heterogeneity of DNA methylation subclasses in 28.2% of glioblastomas, not impacting patient survival. Changes in cell state composition associated with subclass transition may be crucial for recurrent glioblastoma targeted therapies.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/genetics , Glioblastoma/therapy , DNA Methylation , Neoplasm Recurrence, Local/genetics , Survival Analysis
2.
Nephrol Dial Transplant ; 38(9): 2031-2040, 2023 08 31.
Article in English | MEDLINE | ID: mdl-36657383

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a remarkable kidney tropism. While kidney effects are common in severe coronavirus disease 2019 (COVID-19), data on non-severe courses are limited. Here we provide a multilevel analysis of kidney outcomes after non-severe COVID-19 to test for eventual kidney sequela. METHODS: This cross-sectional study investigates individuals after COVID-19 and matched controls recruited from the Hamburg City Health Study (HCHS) and its COVID-19 program. The HCHS is a prospective population-based cohort study within the city of Hamburg, Germany. During the COVID-19 pandemic the study additionally recruited subjects after polymerase chain reaction-confirmed SARS-CoV-2 infections. Matching was performed by age, sex and education. Main outcomes were estimated glomerular filtration rate (eGFR), albuminuria, Dickkopf3, haematuria and pyuria. RESULTS: A total of 443 subjects in a median of 9 months after non-severe COVID-19 were compared with 1328 non-COVID-19 subjects. The mean eGFR was mildly lower in post-COVID-19 than non-COVID-19 subjects, even after adjusting for known risk factors {ß = -1.84 [95% confidence interval (CI) -3.16 to -0.52]}. However, chronic kidney disease [odds ratio (OR) 0.90 (95% CI 0.48-1.66)] or severely increased albuminuria [OR 0.76 (95% CI 0.49-1.09)] equally occurred in post-COVID-19 and non-COVID-19 subjects. Haematuria, pyuria and proteinuria were also similar between the two cohorts, suggesting no ongoing kidney injury after non-severe COVID-19. Further, Dickkopf3 was not increased in the post-COVID-19 cohort, indicating no systematic risk for ongoing GFR decline [ß = -72.19 (95% CI -130.0 to -14.4)]. CONCLUSION: While mean eGFR was slightly lower in subjects after non-severe COVID-19, there was no evidence for ongoing or progressive kidney sequela.


Subject(s)
COVID-19 , Pyuria , Humans , COVID-19/complications , COVID-19/epidemiology , SARS-CoV-2 , Albuminuria , Cohort Studies , Prospective Studies , Pandemics , Hematuria , Cross-Sectional Studies , Kidney , Disease Progression
3.
Nucleic Acids Res ; 47(6): e32, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30698727

ABSTRACT

Long non-coding RNAs (lncRNAs) can act as scaffolds that promote the interaction of proteins, RNA, and DNA. There is increasing evidence of sequence-specific interactions of lncRNAs with DNA via triple-helix (triplex) formation. This process allows lncRNAs to recruit protein complexes to specific genomic regions and regulate gene expression. Here we propose a computational method called Triplex Domain Finder (TDF) to detect triplexes and characterize DNA-binding domains and DNA targets statistically. Case studies showed that this approach can detect the known domains of lncRNAs Fendrr, HOTAIR and MEG3. Moreover, we validated a novel DNA-binding domain in MEG3 by a genome-wide sequencing method. We used TDF to perform a systematic analysis of the triplex-forming potential of lncRNAs relevant to human cardiac differentiation. We demonstrated that the lncRNA with the highest triplex-forming potential, GATA6-AS, forms triple helices in the promoter of genes relevant to cardiac development. Moreover, down-regulation of GATA6-AS impairs GATA6 expression and cardiac development. These data indicate the unique ability of our computational tool to identify novel triplex-forming lncRNAs and their target genes.


Subject(s)
Computational Biology/methods , DNA/metabolism , RNA, Long Noncoding/chemistry , RNA, Long Noncoding/metabolism , Algorithms , Base Sequence , Binding Sites/genetics , DNA/chemistry , Gene Expression , Humans , Nucleic Acid Conformation , Protein Binding , Transcription Factors/metabolism
5.
J Pathol ; 245(3): 373-383, 2018 07.
Article in English | MEDLINE | ID: mdl-29708279

ABSTRACT

Metaplastic breast carcinoma comprises a heterogeneous group of tumours with poorly understood pathogenesis. A subset of metaplastic breast cancers show myoepithelial differentiation and constitute a morphological spectrum with ill-defined borders from fibromatosis-like spindle cell carcinoma to myoepithelial carcinoma. In a series of 34 metaplastic breast cancers with spindle cell and myoepithelial differentiation, we found recurrent genetic aberrations, which set them apart from other metaplastic breast cancers and suggest a unique pathogenesis. The majority of cases (28 of 34 patients; 82.4%) showed distinct chromosomal loss in the 9p21.3 region, including CDKN2A and CDKN2B. Biallelic loss of the CDKN2A/B region was found in 50% of deleted cases. Expression of the cyclin-dependent kinase inhibitor CDKN2A (p16) was missing in all samples affected by 9p21.3 loss. Other genomic alterations frequently occurring in triple-negative and metaplastic breast cancer were absent or found in only a minority of cases. Gains of whole chromosome 5 and chromosomal region 5p were observed in nine cases, and were associated with recurrences (p < 0.001). In 64.3% of cases, 9p21.3 loss was accompanied by concurrent PIK3CA mutation. Both genomic abnormalities were also detectable in adenomyoepitheliomas (4/12), which are considered to represent the precursor lesion of myoepithelial metaplastic breast cancer. In adenomyoepithelioma, PIK3CA mutation was present in both luminal epithelial and myoepithelial cells, whereas p16 loss was found only in the latter. We conclude that 9p21.3 (CDKN2A) loss and PIK3CA mutation characterize a subgroup of metaplastic breast cancers with myoepithelial and spindle cell differentiation. Myoepithelial cells in adenomyoepithelioma may show identical aberrations. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Chromosomes, Human, Pair 9 , Class I Phosphatidylinositol 3-Kinases/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Epithelial Cells/enzymology , Mutation , Myoepithelioma/genetics , Aged , Aged, 80 and over , Biomarkers, Tumor/deficiency , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cell Differentiation , Cyclin-Dependent Kinase Inhibitor p16/deficiency , Epithelial Cells/pathology , Female , Genetic Predisposition to Disease , Humans , Metaplasia , Middle Aged , Myoepithelioma/enzymology , Myoepithelioma/pathology , Phenotype
6.
Nucleic Acids Res ; 44(22): 10631-10643, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27634931

ABSTRACT

There is a growing perception that long non-coding RNAs (lncRNAs) modulate cellular function. In this study, we analyzed the role of the lncRNA HOTAIR in mesenchymal stem cells (MSCs) with particular focus on senescence-associated changes in gene expression and DNA-methylation (DNAm). HOTAIR binding sites were enriched at genomic regions that become hypermethylated with increasing cell culture passage. Overexpression and knockdown of HOTAIR inhibited or stimulated adipogenic differentiation of MSCs, respectively. Modification of HOTAIR expression evoked only very moderate effects on gene expression, particularly of polycomb group target genes. Furthermore, overexpression and knockdown of HOTAIR resulted in DNAm changes at HOTAIR binding sites. Five potential triple helix forming domains were predicted within the HOTAIR sequence based on reverse Hoogsteen hydrogen bonds. Notably, the predicted triple helix target sites for these HOTAIR domains were also enriched in differentially expressed genes and close to DNAm changes upon modulation of HOTAIR Electrophoretic mobility shift assays provided further evidence that HOTAIR domains form RNA-DNA-DNA triplexes with predicted target sites. Our results demonstrate that HOTAIR impacts on differentiation of MSCs and that it is associated with senescence-associated DNAm. Targeting of epigenetic modifiers to relevant loci in the genome may involve triple helix formation with HOTAIR.


Subject(s)
Mesenchymal Stem Cells/physiology , RNA, Long Noncoding/physiology , Base Sequence , Cell Differentiation , Cell Proliferation , Cells, Cultured , Cellular Senescence , DNA Methylation , Epigenesis, Genetic , Gene Expression , Humans , Nucleic Acid Conformation , Protein Binding , RNA, Long Noncoding/chemistry
7.
Nucleic Acids Res ; 43(20): 9680-93, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26476451

ABSTRACT

Dendritic cells (DC) are professional antigen presenting cells that develop from hematopoietic stem cells through successive steps of lineage commitment and differentiation. Multipotent progenitors (MPP) are committed to DC restricted common DC progenitors (CDP), which differentiate into specific DC subsets, classical DC (cDC) and plasmacytoid DC (pDC). To determine epigenetic states and regulatory circuitries during DC differentiation, we measured consecutive changes of genome-wide gene expression, histone modification and transcription factor occupancy during the sequel MPP-CDP-cDC/pDC. Specific histone marks in CDP reveal a DC-primed epigenetic signature, which is maintained and reinforced during DC differentiation. Epigenetic marks and transcription factor PU.1 occupancy increasingly coincide upon DC differentiation. By integrating PU.1 occupancy and gene expression we devised a transcription factor regulatory circuitry for DC commitment and subset specification. The circuitry provides the transcription factor hierarchy that drives the sequel MPP-CDP-cDC/pDC, including Irf4, Irf8, Tcf4, Spib and Stat factors. The circuitry also includes feedback loops inferred for individual or multiple factors, which stabilize distinct stages of DC development and DC subsets. In summary, here we describe the basic regulatory circuitry of transcription factors that drives DC development.


Subject(s)
Dendritic Cells/metabolism , Epigenesis, Genetic , Gene Regulatory Networks , Transcription Factors/metabolism , Animals , Cell Lineage , Cells, Cultured , Hematopoietic Stem Cells/metabolism , Histones/metabolism , Mice , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism
8.
Leukemia ; 38(6): 1213-1222, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744920

ABSTRACT

In contrast to B-cell precursor acute lymphoblastic leukemia (ALL), molecular subgroups are less well defined in T-lineage ALL. Comprehensive studies on molecular T-ALL subgroups have been predominantly performed in pediatric ALL patients. Currently, molecular characteristics are rarely considered for risk stratification. Herein, we present a homogenously treated cohort of 230 adult T-ALL patients characterized on transcriptome, and partly on DNA methylation and gene mutation level in correlation with clinical outcome. We identified nine molecular subgroups based on aberrant oncogene expression correlating to four distinct DNA methylation patterns. The subgroup distribution differed from reported pediatric T-ALL cohorts with higher frequencies of prognostic unfavorable subgroups like HOXA or LYL1/LMO2. A small subset (3%) of HOXA adult T-ALL patients revealed restricted expression of posterior HOX genes with aberrant activation of lncRNA HOTTIP. With respect to outcome, TLX1 (n = 44) and NKX2-1 (n = 4) had an exceptionally favorable 3-year overall survival (3y-OS) of 94%. Within thymic T-ALL, the non TLX1 patients had an inferior but still good prognosis. To our knowledge this is the largest cohort of adult T-ALL patients characterized by transcriptome sequencing with meaningful clinical follow-up. Risk classification based on molecular subgroups might emerge and contribute to improvements in outcome.


Subject(s)
DNA Methylation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Adult , Male , Female , Prognosis , Middle Aged , Young Adult , Adolescent , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Aged , Biomarkers, Tumor/genetics , Mutation , Follow-Up Studies , Survival Rate , Transcriptome , Homeodomain Proteins/genetics
9.
Nat Commun ; 15(1): 4893, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849340

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a debilitating motor neuron disease and lacks effective disease-modifying treatments. This study utilizes a comprehensive multiomic approach to investigate the early and sex-specific molecular mechanisms underlying ALS. By analyzing the prefrontal cortex of 51 patients with sporadic ALS and 50 control subjects, alongside four transgenic mouse models (C9orf72-, SOD1-, TDP-43-, and FUS-ALS), we have uncovered significant molecular alterations associated with the disease. Here, we show that males exhibit more pronounced changes in molecular pathways compared to females. Our integrated analysis of transcriptomes, (phospho)proteomes, and miRNAomes also identified distinct ALS subclusters in humans, characterized by variations in immune response, extracellular matrix composition, mitochondrial function, and RNA processing. The molecular signatures of human subclusters were reflected in specific mouse models. Our study highlighted the mitogen-activated protein kinase (MAPK) pathway as an early disease mechanism. We further demonstrate that trametinib, a MAPK inhibitor, has potential therapeutic benefits in vitro and in vivo, particularly in females, suggesting a direction for developing targeted ALS treatments.


Subject(s)
Amyotrophic Lateral Sclerosis , Disease Models, Animal , MAP Kinase Signaling System , Mice, Transgenic , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/metabolism , Humans , Female , Animals , Male , Mice , MAP Kinase Signaling System/drug effects , Pyridones/pharmacology , Pyridones/therapeutic use , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Prefrontal Cortex/metabolism , Transcriptome , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Middle Aged , MicroRNAs/genetics , MicroRNAs/metabolism , C9orf72 Protein/genetics , C9orf72 Protein/metabolism , Sex Characteristics , Aged , Sex Factors , Pyrimidinones
10.
Nat Med ; 30(6): 1622-1635, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38760585

ABSTRACT

Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is limited. We present an epigenetically defined neural signature of glioblastoma that independently predicts patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals a high abundance of malignant stemcell-like cells in high-neural glioblastoma, primarily of the neural lineage. These cells are further classified as neural-progenitor-cell-like, astrocyte-like and oligodendrocyte-progenitor-like, alongside oligodendrocytes and excitatory neurons. In line with these findings, high-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature is associated with decreased overall and progression-free survival. High-neural tumors also exhibit increased functional connectivity in magnetencephalography and resting-state magnet resonance imaging and can be detected via DNA analytes and brain-derived neurotrophic factor in patients' plasma. The prognostic importance of the neural signature was further validated in patients diagnosed with diffuse midline glioma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant. High-neural gliomas likely require a maximized surgical resection approach for improved outcomes.


Subject(s)
Brain Neoplasms , Epigenesis, Genetic , Glioma , Humans , Prognosis , Glioma/genetics , Glioma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , DNA Methylation/genetics , Animals , Mice , Male , Female , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Glioblastoma/pathology , Middle Aged , Neurons/pathology , Neurons/metabolism , Adult , Single-Cell Analysis , Cell Line, Tumor , Transcriptome , Neoplasm Grading
11.
BMC Bioinformatics ; 14: 7, 2013 Jan 16.
Article in English | MEDLINE | ID: mdl-23323831

ABSTRACT

BACKGROUND: Gene set enrichment (GSE) analysis is a popular framework for condensing information from gene expression profiles into a pathway or signature summary. The strengths of this approach over single gene analysis include noise and dimension reduction, as well as greater biological interpretability. As molecular profiling experiments move beyond simple case-control studies, robust and flexible GSE methodologies are needed that can model pathway activity within highly heterogeneous data sets. RESULTS: To address this challenge, we introduce Gene Set Variation Analysis (GSVA), a GSE method that estimates variation of pathway activity over a sample population in an unsupervised manner. We demonstrate the robustness of GSVA in a comparison with current state of the art sample-wise enrichment methods. Further, we provide examples of its utility in differential pathway activity and survival analysis. Lastly, we show how GSVA works analogously with data from both microarray and RNA-seq experiments. CONCLUSIONS: GSVA provides increased power to detect subtle pathway activity changes over a sample population in comparison to corresponding methods. While GSE methods are generally regarded as end points of a bioinformatic analysis, GSVA constitutes a starting point to build pathway-centric models of biology. Moreover, GSVA contributes to the current need of GSE methods for RNA-seq data. GSVA is an open source software package for R which forms part of the Bioconductor project and can be downloaded at http://www.bioconductor.org.


Subject(s)
Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , Sequence Analysis, RNA/methods , Software , Analysis of Variance , Female , Genetic Variation , Humans , Leukemia, Biphenotypic, Acute/genetics , Leukemia, Biphenotypic, Acute/metabolism , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/mortality , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Statistics, Nonparametric , Survival Analysis
12.
Genome Biol ; 24(1): 212, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37730638

ABSTRACT

BACKGROUND: Single-cell sequencing provides detailed insights into biological processes including cell differentiation and identity. While providing deep cell-specific information, the method suffers from technical constraints, most notably a limited number of expressed genes per cell, which leads to suboptimal clustering and cell type identification. RESULTS: Here, we present DISCERN, a novel deep generative network that precisely reconstructs missing single-cell gene expression using a reference dataset. DISCERN outperforms competing algorithms in expression inference resulting in greatly improved cell clustering, cell type and activity detection, and insights into the cellular regulation of disease. We show that DISCERN is robust against differences between batches and is able to keep biological differences between batches, which is a common problem for imputation and batch correction algorithms. We use DISCERN to detect two unseen COVID-19-associated T cell types, cytotoxic CD4+ and CD8+ Tc2 T helper cells, with a potential role in adverse disease outcome. We utilize T cell fraction information of patient blood to classify mild or severe COVID-19 with an AUROC of 80% that can serve as a biomarker of disease stage. DISCERN can be easily integrated into existing single-cell sequencing workflow. CONCLUSIONS: Thus, DISCERN is a flexible tool for reconstructing missing single-cell gene expression using a reference dataset and can easily be applied to a variety of data sets yielding novel insights, e.g., into disease mechanisms.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , Algorithms , Cell Cycle , Cell Differentiation , Cluster Analysis
13.
J Hypertens ; 41(11): 1721-1729, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37682048

ABSTRACT

BACKGROUND: Various sequelae have been described after nonsevere coronavirus disease 2019 (COVID-19), but knowledge on postacute effects on blood pressure is limited. METHODS: This is a cross-sectional analysis of blood pressure profiles in individuals after nonsevere COVID-19 compared with matched population-based individuals without prior COVID-19. Data were derived from the ongoing and prospective Hamburg City Health Study, a population-based study in Hamburg, Germany, and its associated COVID-19 program, which included individuals at least 4 months after COVID-19. Matching was performed by age, sex, education, and preexisting hypertension in a 1 : 4 ratio. RESULTS: Four hundred and thirty-two individuals after COVID-19 (mean age 56.1 years) were matched to 1728 controls without prior COVID-19 (56.2 years). About 92.8% of COVID-19 courses were mild or moderate, only 7.2% were hospitalized, and no individual had been treated on an intensive care unit. Even after adjustment for relevant competing risk factors, DBP [+4.7 mmHg, 95% confidence interval (95% CI) 3.97-5.7, P  < 0.001] was significantly higher in individuals after COVID-19. For SBP, a trend towards increased values was observed (+1.4 mmHg, 95% CI -0.4 to 3.2, P  = 0.120). Hypertensive blood pressures at least 130/80 mmHg (according to the ACC/AHA guideline) and at least 140/90 mmHg (ESC/ESH guideline) occurred significantly more often in individuals after COVID-19 than matched controls (odds ratio 2.0, 95% CI 1.5-2.7, P  < 0.001 and odds ratio 1.6, 95% CI 1.3-2.0, P  < 0.001, respectively), mainly driven by changes in DBP. CONCLUSION: Blood pressure is higher in individuals after nonsevere COVID-19 compared with uninfected individuals suggesting a significant hypertensive sequela.


Subject(s)
COVID-19 , Hypertension , Humans , Middle Aged , Blood Pressure/physiology , Cross-Sectional Studies , Prospective Studies , COVID-19/complications
14.
Neurooncol Pract ; 10(5): 462-471, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37720395

ABSTRACT

Background: 5-aminolevulinic acid (5-ALA) fluorescence-guided resection increases the percentage of complete CNS tumor resections and improves the progression-free survival of IDH-wildtype glioblastoma patients. A small subset of IDH-wildtype glioblastoma shows no 5-ALA fluorescence. An explanation for these cases is missing. In this study, we used DNA methylation profiling to further characterize non-fluorescent glioblastomas. Methods: Patients with newly diagnosed and recurrent IDH-wildtype glioblastoma that underwent surgery were analyzed. The intensity of intraoperative 5-ALA fluorescence was categorized as non-visible or visible. DNA was extracted from tumors and genome-wide DNA methylation patterns were analyzed using Illumina EPIC (850k) arrays. Furthermore, 5-ALA intensity was measured by flow cytometry on human gliomasphere lines (BT112 and BT145). Results: Of 74 included patients, 12 (16.2%) patients had a non-fluorescent glioblastoma, which were compared to 62 glioblastomas with 5-ALA fluorescence. Clinical characteristics were equally distributed between both groups. We did not find significant differences between DNA methylation subclasses and 5-ALA fluorescence (P = .24). The distribution of cells of the tumor microenvironment was not significantly different between the non-fluorescent and fluorescent tumors. Copy number variations in EGFR and simultaneous EGFRvIII expression were strongly associated with 5-ALA fluorescence since all non-fluorescent glioblastomas were EGFR-amplified (P < .01). This finding was also demonstrated in recurrent tumors. Similarly, EGFR-amplified glioblastoma cell lines showed no 5-ALA fluorescence after 24 h of incubation. Conclusions: Our study demonstrates an association between non-fluorescent IDH-wildtype glioblastomas and EGFR gene amplification which should be taken into consideration for recurrent surgery and future studies investigating EGFR-amplified gliomas.

15.
Res Sq ; 2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38196615

ABSTRACT

Chronic kidney disease (CKD) is a global health epidemic that significantly increases mortality due to cardiovascular disease. Left ventricular hypertrophy (LVH) is an important mechanism of cardiac injury in CKD. High serum levels of fibroblast growth factor (FGF) 23 in patients with CKD may contribute mechanistically to the pathogenesis of LVH by activating FGF receptor (FGFR) 4 signaling in cardiac myocytes. Mitochondrial dysfunction and cardiac metabolic remodeling are early features of cardiac injury that predate development of hypertrophy, but these mechanisms of disease have been insufficiently studied in models of CKD. Wild-type mice with CKD induced by adenine diet developed LVH that was preceded by morphological changes in mitochondrial structure and evidence of cardiac mitochondrial and metabolic dysfunction. In bioengineered cardio-bundles and neonatal rat ventricular myocytes grown in vitro, FGF23-mediated activation of FGFR4 caused a mitochondrial pathology, characterized by increased bioenergetic stress and increased glycolysis, that preceded the development of cellular hypertrophy. The cardiac metabolic changes and associated mitochondrial alterations in mice with CKD were prevented by global or cardiac-specific deletion of FGFR4. These findings indicate that metabolic remodeling and eventually mitochondrial dysfunction are early cardiac complications of CKD that precede structural remodeling of the heart. Mechanistically, FGF23-mediated activation of FGFR4 causes mitochondrial dysfunction, suggesting that early pharmacologic inhibition of FGFR4 might serve as novel therapeutic intervention to prevent development of LVH and heart failure in patients with CKD.

16.
Leukemia ; 37(1): 134-142, 2023 01.
Article in English | MEDLINE | ID: mdl-36411356

ABSTRACT

Acute myeloid leukemia (AML) is characterized by complex molecular alterations and driver mutations. Elderly patients show increased frequencies of IDH mutations with high chemoresistance and relapse rates despite recent therapeutic advances. Besides being associated with global promoter hypermethylation, IDH1 mutation facilitated changes in 3D DNA-conformation by CTCF-anchor methylation and upregulated oncogene expression in glioma, correlating with poor prognosis. Here, we investigated the role of IDH1 p.R132H mutation in altering 3D DNA-architecture and subsequent oncogene activation in AML. Using public RNA-Seq data, we identified upregulation of tyrosine kinase PDGFRA in IDH1-mutant patients, correlating with poor prognosis. DNA methylation analysis identified CpG hypermethylation within a CTCF-anchor upstream of PDGFRA in IDH1-mutant patients. Increased PDGFRA expression, PDGFRA-CTCF methylation and decreased CTCF binding were confirmed in AML CRISPR cells with heterozygous IDH1 p.R132H mutation and upon exogenous 2-HG treatment. IDH1-mutant cells showed higher sensitivity to tyrosine kinase inhibitor dasatinib, which was supported by reduced blast count in a patient with refractory IDH1-mutant AML after dasatinib treatment. Our data illustrate that IDH1 p.R132H mutation leads to CTCF hypermethylation, disrupting DNA-looping and insulation of PDGFRA, resulting in PDGFRA upregulation in IDH1-mutant AML. Treatment with dasatinib may offer a novel treatment strategy for IDH1-mutant AML.


Subject(s)
Isocitrate Dehydrogenase , Leukemia, Myeloid, Acute , Humans , Aged , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Dasatinib , Mutation , Oncogenes , Leukemia, Myeloid, Acute/genetics , Carcinogenesis/genetics
17.
Front Immunol ; 14: 1279245, 2023.
Article in English | MEDLINE | ID: mdl-38179044

ABSTRACT

Differences in immune response between men and women may influence the outcome of infectious diseases. Intestinal infection with Entamoeba histolytica leads to hepatic amebiasis, which is more common in males. Previously, we reported that innate immune cells contribute to liver damage in males in the murine model for hepatic amebiasis. Here, we focused on the influences of sex and androgens on neutrophils in particular. Infection associated with neutrophil accumulation in the liver was higher in male than in female mice and further increased after testosterone treatment in both sexes. Compared with female neutrophils, male neutrophils exhibit a more immature and less activated status, as evidenced by a lower proinflammatory N1-like phenotype and deconvolution, decreased gene expression of type I and type II interferon stimulated genes (ISGs) as well as downregulation of signaling pathways related to neutrophil activation. Neutrophils from females showed higher protein expression of the type I ISG viperin/RSAD2 during infection, which decreased by testosterone substitution. Moreover, ex vivo stimulation of human neutrophils revealed lower production of RSAD2 in neutrophils from men compared with women. These findings indicate that sex-specific effects on neutrophil physiology associated with maturation and type I IFN responsiveness might be important in the outcome of hepatic amebiasis.


Subject(s)
Interferon Type I , Liver Abscess, Amebic , Humans , Male , Female , Mice , Animals , Neutrophils , Testosterone/pharmacology , Interferon-gamma
18.
bioRxiv ; 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37609137

ABSTRACT

Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is nascent. We present an epigenetically defined neural signature of glioblastoma that independently affects patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals high abundance of stem cell-like malignant cells classified as oligodendrocyte precursor and neural precursor cell-like in high-neural glioblastoma. High-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature associates with decreased survival as well as increased functional connectivity and can be detected via DNA analytes and brain-derived neurotrophic factor in plasma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant.

19.
BMC Genom Data ; 23(1): 30, 2022 04 18.
Article in English | MEDLINE | ID: mdl-35436854

ABSTRACT

BACKGROUND: B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a genetically heterogenous malignancy with poor prognosis in relapsed adult patients. The genetic basis for relapse in aneuploid subtypes such as near haploid (NH) and high hyperdiploid (HeH) BCP-ALL is only poorly understood. Pathogenic genetic alterations remain to be identified. To this end, we investigated the dynamics of genetic alterations in a matched initial diagnosis-relapse (ID-REL) BCP-ALL cohort. Here, we firstly report the identification of the novel genetic alteration CYB5Aalt, an alternative transcript of CYB5A, in two independent cohorts. METHODS: We identified CYB5alt in the RNAseq-analysis of a matched ID-REL BCP-ALL cohort with 50 patients and quantified its expression in various molecular BCP-ALL subtypes. Findings were validated in an independent cohort of 140 first diagnosis samples from adult BCP-ALL patients. Derived from patient material, the alternative open reading frame of CYB5Aalt was cloned (pCYB5Aalt) and pCYB5Aalt or the empty vector were stably overexpressed in NALM-6 cells. RNA sequencing was performed of pCYB5Aalt clones and empty vector controls followed by differential expression analysis, gene set enrichment analysis and complementing cell death and viability assays to determine functional implications of CYB5Aalt. RESULTS: RNAseq data analysis revealed non-canonical exon usage of CYB5Aalt starting from a previously undescribed transcription start site. CYB5Aalt expression was increased in relapsed BCP-ALL and its occurrence was specific towards the shared gene expression cluster of NH and HeH BCP-ALL in independent cohorts. Overexpression of pCYB5Aalt in NALM-6 cells induced a distinct transcriptional program compared to empty vector controls with downregulation of pathways related to reported functions of CYB5A wildtype. Interestingly, CYB5A wildtype expression was decreased in CYB5Aalt samples in silico and in vitro. Additionally, pCYB5Aalt NALM-6 elicited a more resistant drug response. CONCLUSIONS: Across all age groups, CYB5Aalt was the most frequent secondary genetic event in relapsed NH and HeH BCP-ALL. In addition to its high subgroup specificity, CYB5Aalt is a novel candidate to be potentially implicated in therapy resistance in NH and HeH BCP-ALL. This is underlined by overexpressing CYB5Aalt providing first evidence for a functional role in BCL2-mediated apoptosis.


Subject(s)
Cytochromes b5 , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Adult , Aneuploidy , Cytochromes b5/genetics , Humans , Mutation , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Recurrence
20.
Leukemia ; 33(8): 1895-1909, 2019 08.
Article in English | MEDLINE | ID: mdl-30842609

ABSTRACT

Chromosomal rearrangements and specific aneuploidy patterns are initiating events and define subgroups in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Here we analyzed 250 BCP-ALL cases and identified a novel subgroup ('PAX5-plus', n = 19) by distinct DNA methylation and gene expression profiles. All patients in this subgroup harbored mutations in the B-lineage transcription factor PAX5, with p.P80R as hotspot. Mutations either affected two independent codons, consistent with compound heterozygosity, or suffered LOH predominantly through chromosome 9p aberrations. These biallelic events resulted in disruption of PAX5 transcriptional programs regulating B-cell differentiation and tumor suppressor functions. Homozygous CDKN2A/B deletions and RAS-activating hotspot mutations were highly enriched as cooperating events in the genomic profile of PAX5-plus ALL. Together, this defined a specific pattern of triple alterations, exclusive to the novel subgroup. PAX5-plus ALL was observed in pediatric and adult patients. Although restricted by the limited sample size, a tendency for more favorable clinical outcome was observed, with 10 of 12 adult PAX5-plus patients achieving long-term survival. PAX5-plus represents the first BCP-ALL subgroup defined by sequence alterations in contrast to gross chromosomal events and exemplifies how deregulated differentiation (PAX5), impaired cell cycle control (CDKN2A/B) and sustained proliferative signaling (RAS) cooperatively drive leukemogenesis.


Subject(s)
Mutation , PAX5 Transcription Factor/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Chromosomes, Human, Pair 9 , Cyclin-Dependent Kinase Inhibitor p15/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA Methylation , Energy Metabolism , Humans , Loss of Heterozygosity
SELECTION OF CITATIONS
SEARCH DETAIL