Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nature ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137897

ABSTRACT

In systemic lupus erythematosus, loss of immune tolerance, autoantibody production and immune complex deposition are required but not sufficient for organ damage1. How inflammatory signals are initiated and amplified in the setting of autoimmunity remains elusive. Here we set out to dissect layers and hierarchies of autoimmune kidney inflammation to identify tissue-specific cellular hubs that amplify autoinflammatory responses. Using high-resolution single-cell profiling of kidney immune and parenchymal cells, in combination with antibody blockade and genetic deficiency, we show that tissue-resident NKp46+ innate lymphoid cells (ILCs) are crucial signal amplifiers of disease-associated macrophage expansion and epithelial cell injury in lupus nephritis, downstream of autoantibody production. NKp46 signalling in a distinct subset of group 1 ILCs (ILC1s) instructed an unconventional immune-regulatory transcriptional program, which included the expression of the myeloid cell growth factor CSF2. CSF2 production by NKp46+ ILCs promoted the population expansion of monocyte-derived macrophages. Blockade of the NKp46 receptor (using the antibody clone mNCR1.15; ref. 2) or genetic deficiency of NKp46 abrogated epithelial cell injury. The same cellular and molecular patterns were operative in human lupus nephritis. Our data provide support for the idea that NKp46+ ILC1s promote parenchymal cell injury by granting monocyte-derived macrophages access to epithelial cell niches. NKp46 activation in ILC1s therefore constitutes a previously unrecognized, crucial tissue rheostat that amplifies organ damage in autoimmune hosts, with broad implications for inflammatory pathologies and therapies.

2.
Eur J Immunol ; 53(10): e2350394, 2023 10.
Article in English | MEDLINE | ID: mdl-37431194

ABSTRACT

Antibiotic use during pregnancy is associated with increased asthma risk in children. Since approximately 25% of women use antibiotics during pregnancy, it is important to identify the pathways involved in this phenomenon. We investigate how mother-to-offspring transfer of antibiotic-induced gut microbial dysbiosis influences immune system development along the gut-lung axis. Using a mouse model of maternal antibiotic exposure during pregnancy, we immunophenotyped offspring in early life and after asthma induction. In early life, prenatal-antibiotic exposed offspring exhibited gut microbial dysbiosis, intestinal inflammation (increased fecal lipocalin-2 and IgA), and dysregulated intestinal ILC3 subtypes. Intestinal barrier dysfunction in the offspring was indicated by a FITC-dextran intestinal permeability assay and circulating lipopolysaccharide. This was accompanied by increased T-helper (Th)17 cell percentages in the offspring's blood and lungs in both early life and after allergy induction. Lung tissue additionally showed increased percentages of RORγt T-regulatory (Treg) cells at both time points. Our investigation of the gut-lung axis identifies early-life gut dysbiosis, intestinal inflammation, and barrier dysfunction as a possible developmental programming event promoting increased expression of RORγt in blood and lung CD4+ T cells that may contribute to increased asthma risk.


Subject(s)
Asthma , Gastrointestinal Microbiome , Pregnancy , Child , Humans , Female , Anti-Bacterial Agents/adverse effects , Nuclear Receptor Subfamily 1, Group F, Member 3 , Dysbiosis , Inflammation , Lung
3.
J Dtsch Dermatol Ges ; 13(1): 23-9, 2015 Jan.
Article in English, German | MEDLINE | ID: mdl-25640488

ABSTRACT

During the recent years, immunotherapy has obtained substantial impact on the clinical treatment of melanoma. Besides promising approaches based on T lymphocytes, natural killer (NK) cells have gained more and more attention as anti-melanoma effector cells. NK cell activation is inhibited by HLA class I molecules expressed by target cells, so they preferentially attack tumor cells that express low levels of HLA class I. Partial or complete loss of HLA class I expression is a frequent event during the development of melanoma. In parallel, ligands for activating NK cell receptors become induced upon malignant transformation. Thus, melanoma cells are often efficiently recognized and lysed by NK cells at least in vitro. In vivo, however, melanomas have developed multiple sophisticated strategies to escape from NK cell mediated attack. Several novel approaches aim at harnessing NK cells to treat melanoma patients and to counteract existing tumor escape mechanisms. This review summarizes the most recent advances in the field.


Subject(s)
Immunotherapy, Adoptive/methods , Killer Cells, Natural/immunology , Melanoma/immunology , Melanoma/therapy , Skin Neoplasms/immunology , Skin Neoplasms/therapy , Humans , Models, Immunological
4.
Cell Rep ; 38(13): 110564, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35354032

ABSTRACT

Cerebral infections are restrained by a complex interplay of tissue-resident and recruited peripheral immune cells. Whether innate lymphoid cells (ILCs) are involved in the orchestration of the neuroinflammatory dynamics is not fully understood. Here, we demonstrate that ILCs accumulate in the cerebral parenchyma, the choroid plexus, and the meninges in the onset of cerebral Toxoplasma gondii infection. Antibody-mediated depletion of conventional natural killer (cNK) cells and ILC1s in the early stage of infection results in diminished cytokine and chemokine expression and increased cerebral parasite burden. Using cNK- and ILC1-deficient murine models, we demonstrate that exclusively the lack of ILC1s affects cerebral immune responses. In summary, our results provide evidence that ILC1s are an early source of IFN-γ and TNF in response to cerebral T. gondii infection, thereby inducing host defense factors and initiating the development of a neuroinflammatory response.


Subject(s)
Toxoplasma , Toxoplasmosis , Animals , Immunity, Innate , Killer Cells, Natural , Mice , Neuroinflammatory Diseases
5.
J Clin Invest ; 131(14)2021 07 15.
Article in English | MEDLINE | ID: mdl-34101623

ABSTRACT

Novel mRNA-based vaccines have been proven to be powerful tools in combating the global pandemic caused by SARS-CoV-2, with BNT162b2 (trade name: Comirnaty) efficiently protecting individuals from COVID-19 across a broad age range. Still, it remains largely unknown how renal insufficiency and immunosuppressive medication affect development of vaccine-induced immunity. We therefore comprehensively analyzed humoral and cellular responses in kidney transplant recipients after the standard second vaccination dose. As opposed to all healthy vaccinees and the majority of hemodialysis patients, only 4 of 39 and 1 of 39 transplanted individuals showed IgA and IgG seroconversion at day 8 ± 1 after booster immunization, with minor changes until day 23 ± 5, respectively. Although most transplanted patients mounted spike-specific T helper cell responses, frequencies were significantly reduced compared with those in controls and dialysis patients and this was accompanied by a broad impairment in effector cytokine production, memory differentiation, and activation-related signatures. Spike-specific CD8+ T cell responses were less abundant than their CD4+ counterparts in healthy controls and hemodialysis patients and almost undetectable in transplant patients. Promotion of anti-HLA antibodies or acute rejection was not detected after vaccination. In summary, our data strongly suggest revised vaccination approaches in immunosuppressed patients, including individual immune monitoring for protection of this vulnerable group at risk of developing severe COVID-19.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/immunology , COVID-19/prevention & control , Kidney Transplantation/adverse effects , SARS-CoV-2 , Adult , Aged , Antibodies, Viral/biosynthesis , BNT162 Vaccine , COVID-19 Vaccines/immunology , Case-Control Studies , Cohort Studies , Cytokines/immunology , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunization, Secondary , Immunoglobulin A/biosynthesis , Immunoglobulin G/biosynthesis , Immunologic Memory , Immunosuppressive Agents/adverse effects , Lymphocyte Activation , Male , Middle Aged , Monitoring, Immunologic , Renal Dialysis/adverse effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology , Transplantation Immunology
6.
Elife ; 92020 02 10.
Article in English | MEDLINE | ID: mdl-32039762

ABSTRACT

RORγt+ group 3 innate lymphoid cells (ILC3s) maintain intestinal homeostasis through secretion of type 3 cytokines such as interleukin (IL)-17 and IL-22. However, CCR6- ILC3s additionally co-express T-bet allowing for the acquisition of type 1 effector functions. While T-bet controls the type 1 programming of ILC3s, the molecular mechanisms governing T-bet are undefined. Here, we identify c-Maf as a crucial negative regulator of murine T-bet+ CCR6- ILC3s. Phenotypic and transcriptomic profiling of c-Maf-deficient CCR6- ILC3s revealed a hyper type 1 differentiation status, characterized by overexpression of ILC1/NK cell-related genes and downregulation of type 3 signature genes. On the molecular level, c-Maf directly restrained T-bet expression. Conversely, c-Maf expression was dependent on T-bet and regulated by IL-1ß, IL-18 and Notch signals. Thus, we define c-Maf as a crucial cell-intrinsic brake in the type 1 effector acquisition which forms a negative feedback loop with T-bet to preserve the identity of CCR6- ILC3s.


Subject(s)
Cellular Reprogramming/physiology , Immunity, Innate , Lymphocytes/metabolism , Proto-Oncogene Proteins c-maf/physiology , Receptors, CCR6/metabolism , T-Box Domain Proteins/physiology , Animals , Cell Lineage , Interleukin-18/physiology , Interleukin-1beta/physiology , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Promoter Regions, Genetic , Receptors, Notch/metabolism , Signal Transduction , T-Box Domain Proteins/genetics
7.
Oncoimmunology ; 5(9): e1219009, 2016.
Article in English | MEDLINE | ID: mdl-27757318

ABSTRACT

Natural killer (NK) cell infusions can induce remissions in subsets of patients with different types of cancer. The optimal strategies for NK cell activation prior to infusion are still under debate. There is recent evidence that NK cells can acquire long-term functional competence by preactivation with the cytokines IL-12/15/18. The mechanisms supporting the maintenance of long-term NK cell antitumor activity are incompletely under-stood. Here, we show that NK cells preactivated in vitro with IL-12/15/18, but not with IL-15 alone, maintained high antitumor activity even 1 mo after transfer into lymphopenic RAG-2-/-γc-/- mice. The NK cell intrinsic ability for IFNγ production coincided with demethylation of the conserved non-coding sequence (CNS) 1 in the Ifng locus, previously shown to enhance transcription of Ifng. In a xenograft melanoma mouse model, human IL-12/15/18-preactivated NK cells rejected tumors more efficiently. In RAG-2-/-γc-/- mice, co-transfer of CD4+ T cells further improved the long-term competence of NK cells for IFNγ production that was dependent on IL-2. CD4+ T cell activation during homeostatic proliferation required macrophages and further promoted the long-term NK cell antitumor activity. Thus, NK cells can "remember" a previous exposure to cytokines by epigenetic imprinting resulting in a remarkable stability of the IFNγ-producing phenotype after adoptive transfer. In addition, our results support combination of cytokine-preactivated NK cells with CD4+ T cell activation upon lymphopenic conditioning to achieve long-term NK cell effector function for cancer immunotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL