Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Invest Dermatol ; 144(3): 547-562.e9, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37716646

ABSTRACT

Plectin, a highly versatile and multifunctional cytolinker, has been implicated in several multisystemic disorders. Most sequence variations in the human plectin gene (PLEC) cause epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), an autosomal recessive skin-blistering disorder associated with progressive muscle weakness. In this study, we performed a comprehensive cell biological analysis of dermal fibroblasts from three different patients with EBS-MD, where PLEC expression analyses revealed preserved mRNA levels in all cases, whereas full-length plectin protein content was significantly reduced or completely absent. Downstream effects of pathogenic PLEC sequence alterations included massive bundling of vimentin intermediate filament networks, including the occurrence of ring-like nuclei-encasing filament bundles, elongated mitochondrial networks, and abnormal nuclear morphologies. We found that essential fibroblast functions such as wound healing, migration, or orientation upon cyclic stretch were significantly impaired in the cells of patients with EBS-MD. Finally, EBS-MD fibroblasts displayed reduced adhesion capacities, which could be attributed to smaller focal adhesion contacts. Our study not only emphasizes plectin's functional role in human skin fibroblasts, it also provides further insights into the understanding of EBS-MD-associated disease mechanisms.


Subject(s)
Epidermolysis Bullosa Simplex , Muscular Dystrophies, Limb-Girdle , Muscular Dystrophies , Humans , Intermediate Filaments/metabolism , Plectin/genetics , Epidermolysis Bullosa Simplex/pathology , Muscular Dystrophies/complications , Muscular Dystrophies/genetics , Muscular Dystrophies/metabolism , Mitochondria/metabolism , Fibroblasts/metabolism , Intermediate Filament Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL