Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Angew Chem Int Ed Engl ; 62(23): e202302490, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37014271

ABSTRACT

Lanthipeptides are ribosomally-synthesized natural products from bacteria featuring stable thioether-crosslinks and various bioactivities. Herein, we report on a new clade of tricyclic class-IV lanthipeptides with curvocidin from Thermomonospora curvata as its first representative. We obtained crystal structures of the corresponding lanthipeptide synthetase CuvL that showed a circular arrangement of its kinase, lyase and cyclase domains, forming a central reaction chamber for the iterative substrate processing involving nine catalytic steps. The combination of experimental data and artificial intelligence-based structural models identified the N-terminal subdomain of the kinase domain as the primary site of substrate recruitment. The ribosomal precursor peptide of curvocidin employs an amphipathic α-helix in its leader region as an anchor to CuvL, while its substrate core shuttles within the central reaction chamber. Our study thus reveals general principles of domain organization and substrate recruitment of class-IV and class-III lanthipeptide synthetases.


Subject(s)
Artificial Intelligence , Ligases , Ligases/chemistry , Peptides/chemistry
2.
Angew Chem Int Ed Engl ; 59(38): 16777-16785, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32533616

ABSTRACT

The recently discovered strongly anti-Gram-positive lipolanthines represent a new group of lipidated, ribosomally synthesized and post-translationally modified peptides (RiPPs). They are bicyclic octapeptides with a central quaternary carbon atom (avionin), which is installed through the cooperative action of the class-III lanthipeptide synthetase MicKC and the cysteine decarboxylase MicD. Genome mining efforts indicate a widespread distribution and unprecedented biosynthetic diversity of lipolanthine gene clusters, combining elements of RiPPs, polyketide and non-ribosomal peptide biosynthesis. Utilizing NMR spectroscopy, we show that a (θxx)θxxθxxθ (θ=L, I, V, M or T) motif, which is conserved in the leader peptides of all class-III and -IV lanthipeptides, forms an amphipathic α-helix in MicA that destines the peptide substrate for enzymatic processing. Our results provide general rules of substrate recruitment and enzymatic regulation during lipolanthine maturation. These insights will facilitate future efforts to rationally design new lanthipeptide scaffolds with antibacterial potency.


Subject(s)
Carboxy-Lyases/metabolism , Lipopeptides/biosynthesis , Peptide Synthases/metabolism , Ribosomes/metabolism , Carboxy-Lyases/chemistry , Lipopeptides/chemistry , Lipopeptides/genetics , Peptide Synthases/chemistry , Protein Conformation, alpha-Helical , Ribosomes/chemistry
3.
Nat Chem Biol ; 11(3): 195-7, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25599532

ABSTRACT

Albicidin is a potent DNA gyrase inhibitor produced by the sugarcane pathogenic bacterium Xanthomonas albilineans. Here we report the elucidation of the hitherto unknown structure of albicidin, revealing a unique polyaromatic oligopeptide mainly composed of p-aminobenzoic acids. In vitro studies provide further insights into the biosynthetic machinery of albicidin. These findings will enable structural investigations on the inhibition mechanism of albicidin and its assessment as a highly effective antibacterial drug.


Subject(s)
4-Aminobenzoic Acid/chemistry , Alanine/analogs & derivatives , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Alanine/chemistry , Anti-Bacterial Agents/chemical synthesis , Bacteria/drug effects , Fermentation , Microbial Sensitivity Tests , Oligopeptides/chemistry , Organic Chemicals/chemical synthesis , Organic Chemicals/chemistry , Organic Chemicals/pharmacology , Structure-Activity Relationship , Xanthomonas/chemistry
4.
BMC Genomics ; 14: 658, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-24069909

ABSTRACT

BACKGROUND: Various bacteria can use non-ribosomal peptide synthesis (NRPS) to produce peptides or other small molecules. Conserved features within the NRPS machinery allow the type, and sometimes even the structure, of the synthesized polypeptide to be predicted. Thus, bacterial genome mining via in silico analyses of NRPS genes offers an attractive opportunity to uncover new bioactive non-ribosomally synthesized peptides. Xanthomonas is a large genus of Gram-negative bacteria that cause disease in hundreds of plant species. To date, the only known small molecule synthesized by NRPS in this genus is albicidin produced by Xanthomonas albilineans. This study aims to estimate the biosynthetic potential of Xanthomonas spp. by in silico analyses of NRPS genes with unknown function recently identified in the sequenced genomes of X. albilineans and related species of Xanthomonas. RESULTS: We performed in silico analyses of NRPS genes present in all published genome sequences of Xanthomonas spp., as well as in unpublished draft genome sequences of Xanthomonas oryzae pv. oryzae strain BAI3 and Xanthomonas spp. strain XaS3. These two latter strains, together with X. albilineans strain GPE PC73 and X. oryzae pv. oryzae strains X8-1A and X11-5A, possess novel NRPS gene clusters and share related NRPS-associated genes such as those required for the biosynthesis of non-proteinogenic amino acids or the secretion of peptides. In silico prediction of peptide structures according to NRPS architecture suggests eight different peptides, each specific to its producing strain. Interestingly, these eight peptides cannot be assigned to any known gene cluster or related to known compounds from natural product databases. PCR screening of a collection of 94 plant pathogenic bacteria indicates that these novel NRPS gene clusters are specific to the genus Xanthomonas and are also present in Xanthomonas translucens and X. oryzae pv. oryzicola. Further genome mining revealed other novel NRPS genes specific to X. oryzae pv. oryzicola or Xanthomonas sacchari. CONCLUSIONS: This study revealed the significant potential of the genus Xanthomonas to produce new non-ribosomally synthesized peptides. Interestingly, this biosynthetic potential seems to be specific to strains of Xanthomonas associated with monocotyledonous plants, suggesting a putative involvement of non-ribosomally synthesized peptides in plant-bacteria interactions.


Subject(s)
Computational Biology/methods , Genome, Bacterial/genetics , Peptide Biosynthesis, Nucleic Acid-Independent/genetics , Peptides/metabolism , Xanthomonas/genetics , Amino Acid Sequence , Computer Simulation , Fatty Acids/biosynthesis , Genes, Bacterial , Genetic Loci/genetics , Multigene Family , Physical Chromosome Mapping , Plants/microbiology , Polymerase Chain Reaction , Sequence Homology, Amino Acid , Xanthomonas/enzymology
5.
ACS Chem Biol ; 11(1): 69-76, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26488920

ABSTRACT

Lanthipeptides are ribosomally synthesized and post-translationally modified peptides bearing the characteristic amino acids lanthionine and/or labionin. Here, we report on the discovery and characterization of the stackepeptins, produced by the Actinomycete Stackebrandtia nassauensis DSM-44728(T). The stackepeptins are the first supersized class III lanthipeptides to be discovered. Unlike other class III lanthipeptides, they consist of three lanthionine/labionin moieties instead of two. In this study, both in vivo and in vitro maturation of the peptides have been investigated. Studies involving the wild type strain showed culture medium-dependent production of three stackepeptins consisting of one common N-terminal labionin ring and varying dehydration and cyclization patterns in the C-terminal rings. On the other hand, in vitro assessment of the heterologously expressed modifying enzyme StaKC, yielded one major product with an N-terminal lanthionine and C-terminal labionins. The discrepancy between in vivo and in vitro processing was discovered to be sequence-dependent and also implies that in vivo processing is facilitated by additional factors in the cell. Furthermore, a Ser → Ala scan revealed the importance of C-terminal ring formation for full in vitro maturation of the stackepeptins. StaKC showed promiscuity toward the phosphorylating cosubstrate with a significant preference for purine nucleotides. Finally, in contrast to other known class III lanthipeptides, in vitro experiments showed that the leader peptide might not be required for partial dehydration by the modifying enzyme.


Subject(s)
Actinobacteria/chemistry , Peptides/chemistry , Amino Acid Motifs/genetics , Conserved Sequence , Molecular Structure , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL