Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
JCI Insight ; 4(9)2019 05 02.
Article in English | MEDLINE | ID: mdl-31045576

ABSTRACT

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are dually gated channels that are operated by voltage and by neurotransmitters via the cAMP system. cAMP-dependent HCN regulation has been proposed to play a key role in regulating circuit behavior in the thalamus. By analyzing a knockin mouse model (HCN2EA), in which binding of cAMP to HCN2 was abolished by 2 amino acid exchanges (R591E, T592A), we found that cAMP gating of HCN2 is essential for regulating the transition between the burst and tonic modes of firing in thalamic dorsal-lateral geniculate (dLGN) and ventrobasal (VB) nuclei. HCN2EA mice display impaired visual learning, generalized seizures of thalamic origin, and altered NREM sleep properties. VB-specific deletion of HCN2, but not of HCN4, also induced these generalized seizures of the absence type, corroborating a key role of HCN2 in this particular nucleus for controlling consciousness. Together, our data define distinct pathological phenotypes resulting from the loss of cAMP-mediated gating of a neuronal HCN channel.


Subject(s)
Cyclic AMP/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Seizures/metabolism , Animals , Behavior, Animal , Epilepsy/metabolism , HEK293 Cells , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Molecular , Neurons/metabolism , Potassium Channels , Thalamus/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL