Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Eur J Nutr ; 59(4): 1371-1378, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31187261

ABSTRACT

PURPOSE: A technological gap exists for the iron (Fe) fortification of difficult-to-fortify products, such as wet and acid food products containing polyphenols, with stable and bioavailable Fe. Fe picolinate, a novel food ingredient, was found to be stable over time in this type of matrix. The objective of this study was to measure the Fe bioavailability of Fe picolinate in a complementary fruit yogurt. METHODS: The bioavailability of Fe picolinate was determined using stable iron isotopes in a double blind, randomized cross-over design in non-anemic Swiss women (n = 19; 25.1 ± 4.6 years). Fractional Fe absorption was measured from Fe picolinate (2.5 mg 57Fe per serving in two servings given morning and afternoon) and from Fe sulfate (2.5 mg 54Fe per serving in two servings given morning and afternoon) in a fortified dairy complementary food (i.e. yogurt containing fruits). Fe absorption was determined based on erythrocyte incorporation of isotopic labels 14 days after consumption of the last test meal. RESULTS: Geometric mean (95% CI) fractional iron absorption from Fe picolinate and Fe sulfate were not significantly different: 5.2% (3.8-7.2%) and 5.3% (3.8-7.3%) (N.S.), respectively. Relative bioavailability of Fe picolinate versus Fe sulfate was 0.99 (0.85-1.15). CONCLUSION: Therefore, Fe picolinate is a promising compound for the fortification of difficult-to-fortify foods, to help meet Fe requirements of infants, young children and women of childbearing age.


Subject(s)
Ferrous Compounds/pharmacokinetics , Food, Fortified , Iron/pharmacokinetics , Picolinic Acids/pharmacokinetics , Yogurt , Adolescent , Adult , Biological Availability , Cross-Over Studies , Double-Blind Method , Female , Fruit/metabolism , Humans , Iron Isotopes/pharmacokinetics , Switzerland , Young Adult
2.
Sci Rep ; 10(1): 5340, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32210248

ABSTRACT

In a series of two studies, we report the development (this study) and evaluation (part II) of a novel ferric phytate compound designed as a condiment iron fortificant. Condiments are used as iron fortification vehicles to reduce the prevalence  of iron deficiency. The challenge for iron fortificants in e.g. a bouillon matrix is to avoid undesired sensory effects and to ensure a reasonable cost. We added phytic acid to chelate iron, and hydrolysed protein to counteract the inhibiting effect of phytic acid on iron bioaccessibility. We characterised four novel ferric phytate compounds, destabilised by hydrolysed plant protein or amino acids. Colour stability of fortified bouillons with ferric phytate compounds was superior to bouillons fortified with ferrous sulfate. The iron-phytate-hydrolysed corn protein compound (Fe-PA-HCP) resulted in highest cellular ferritin induction in Caco-2 cells, in both vegetable (36.1 ± 13.40 ng/mg protein) and chicken (73.9 ± 19.93 ng/mg protein) bouillon matrices as observed in the human Caco-2/HepG2 cell model. Iron uptake (as estimated by ferritin production) from the Fe-PA-HCP compound was about 55% (chicken bouillon) and 66% (vegetable bouillon) of the iron uptake from ferrous sulfate. Based on this study, the Fe-PA-HCP compound was chosen for further evaluation (part II).

3.
Sci Rep ; 10(1): 5339, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32210349

ABSTRACT

Bouillon cubes are widely consumed and when fortified with iron could contribute in preventing iron deficiency. We report the development (part I) and evaluation (current part II) of a novel ferric phytate compound to be used as iron fortificant in condiments such as bouillon. Ferric pyrophosphate (FePP), is the compound of choice due to its high stability in foods, but has a modest absorption in humans. Our objective was to assess iron bioavailability from a novel iron fortificant consisting of ferric iron complexed with phytic acid and hydrolyzed corn protein (Fe-PA-HCP), used in bouillon with and without an inhibitory food matrix. In a randomised single blind, cross-over study, we measured iron absorption in healthy adult women (n = 22). In vitro iron bioaccessibility was assessed using a Caco-2 cell model. Iron absorption from Fe-PA-HCP was 1.5% and 4.1% in bouillon with and without inhibitory matrix, respectively. Relative iron bioavailability to FeSO4 was 2.4 times higher than from FePP in bouillon (17% vs 7%) and 5.2 times higher when consumed with the inhibitory meal (41% vs 8%). Similar results were found in vitro. Fe-PA-HCP has a higher relative bioavailability versus FePP, especially when bouillon is served with an inhibitory food matrix.


Subject(s)
Ferric Compounds/pharmacokinetics , Food, Fortified , Iron/pharmacokinetics , Phytic Acid/chemistry , Adult , Caco-2 Cells , Cross-Over Studies , Female , Ferric Compounds/chemistry , Ferritins/blood , Humans , Hydrolysis , Iron Radioisotopes/pharmacokinetics , Plant Proteins, Dietary/chemistry , Single-Blind Method , Young Adult , Zea mays/chemistry
4.
Nutr Rev ; 76(10): 778-792, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29931214

ABSTRACT

Vitamin B12 (B-12) deficiency is still relatively common in low-, medium-, and high-income countries, mainly because of dietary inadequacy and, to a lesser extent, malabsorption. This narrative review is based on a systematic search of evidence on methods to assess B-12 bioavailability and technologies to enhance its absorption. A total of 2523 scientific articles identified in PubMed and 1572 patents identified in Orbit Intelligence were prescreened. Among the reviewed methods, Schilling's test and/or its food-based version (using cobalamin-labeled egg yolk) were used for decades but have been discontinued, largely because they required radioactive cobalt. The qualitative CobaSorb test, based on changes in circulating holo-transcobalamin before and after B-12 administration, and the 14C-labeled B-12 test for quantitative measurement of absorption of a low-dose radioactive tracer are currently the best available methods. Various forms of B-12 co-formulated with chemical enhancers (ie, salcaprozate sodium, 8-amino caprylate) or supplied via biotechnological methods (ie, microbiological techniques, plant cells expressing cobalamin binding proteins), encapsulation techniques (ie, emulsions, use of chitosan particles), and alternative routes of administration (ie, intranasal, transdermal administration) were identified as potential technologies to enhance B-12 absorption in humans. However, in most cases the evidence of absorption enhancement is limited.


Subject(s)
Absorption, Physicochemical , Dietary Supplements/analysis , Vitamin B 12 Deficiency/therapy , Vitamin B 12/pharmacokinetics , Biological Availability , Humans , Vitamin B 12 Deficiency/physiopathology
5.
Food Res Int ; 88(Pt A): 122-128, 2016 Oct.
Article in English | MEDLINE | ID: mdl-28847391

ABSTRACT

Iron, vitamin A, zinc and iodine have been recognized to be the micronutrients with the largest deficiencies worldwide. Among these, iron is highly reactive and may lead to negatively perceived organoleptic changes in products such as dull colour and off-taste. The colour change originated in fortified fruit-containing food products was confirmed to be the result of the complexation of iron and polyphenols. Phenolic compounds with two or more vicinal hydroxy benzyl moieties in their structure, such as catechols and pyrogallols were investigated for their ability to give bathochromic shift phenomena when mixed with iron salts. Furthermore, strategies for limiting colour development were based on: 1) pH adjustment; 2) saturation of polyphenols with unreactive divalent metal ions; 3) suppression of iron reactivity through complexation. Some of these strategies showed a significant improvement in colour stability, with the best results achieved by the latter. The findings in model systems gave a good insight of the mechanisms involved in colour changes, and results were transferable to iron fortified banana puree.

6.
J Theor Biol ; 239(4): 445-9, 2006 Apr 21.
Article in English | MEDLINE | ID: mdl-16171828

ABSTRACT

DNA vaccines utilize host cell molecules for gene transcription and translation to proteins, and the interspecific difference of codon usage is one of the major obstacles for effective induction of specific and strong immune response. In an attempt to improve codon usage effects of DNA vaccine on protein expression, a quantitative study was conducted to clarify the relationship of codon usage in the tick gene bm86 and its potential expression in bovine cells. The calculated relative synonymous codon usage (RSCU) and codon adaptation index (CAI) values of bm86 from Boophilus microplus and a set of 14 highly expressed genes from Bos taurus indicated that some codons utilized frequently in bm86 are rarely used in B. taurus genes and vice versa. The different translational efficiencies obtained suggested that after DNA vaccination using the wild bm86 gene, the protein Bm86 would be expressed in bovines, but it would not be the optimum sequence. However, using the codon-optimized bm86 gene to bovines, whose sequence was theoretically designed, would probably improve the level of the immune response generated against ticks.


Subject(s)
Cattle Diseases/prevention & control , Membrane Glycoproteins/genetics , Models, Genetic , Recombinant Proteins/genetics , Tick Infestations/prevention & control , Vaccines, DNA/genetics , Vaccines/genetics , Amino Acid Sequence , Animals , Cattle , Cattle Diseases/parasitology , Codon , Gene Expression , Models, Immunological , Molecular Sequence Data , Ticks/genetics , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL